Gotowa bibliografia na temat „Pseudo-differential amplifier”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Pseudo-differential amplifier”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Pseudo-differential amplifier"

1

Shainda, J. Tahseen*1 Sandeep Singh 2. "REVIEW PAPER ON PSEUDO-DIFFERENTIAL AND BULK-DRIVEN MOS TRANSISTOR TECHNIQUE FOR OTA." INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY 6, no. 7 (2017): 596–601. https://doi.org/10.5281/zenodo.829785.

Pełny tekst źródła
Streszczenie:
This paper presents review on Pseudo-Differential amplifier technique and Bulk-Driven MOS transistor technique for ultra-low voltage and power. By using this technique, a different design of operational transconductance amplifier (OTA) is briefly explained along with their outputs and their application. By using a pseudo-differential technique a voltage drop across the tail current is avoid as the tail-current is removed in Pseudo-differential amplifier where as by using the Bulk-Driven MOS transistor a minimum supply voltage is achieved because of the possibility in reduction of threshold vol
Style APA, Harvard, Vancouver, ISO itp.
2

Atkin, E. V., and V. V. Shumikhin. "Charge Sensitive Amplifier with Pseudo-differential Output." Russian Microelectronics 50, no. 3 (2021): 206–10. http://dx.doi.org/10.1134/s1063739721020037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

NGUYEN, Huy-Hieu, Jeong-Seon LEE, and Sang-Gug LEE. "Low Voltage Current-Reused Pseudo-Differential Programmable Gain Amplifier." IEICE Transactions on Electronics E93-C, no. 1 (2010): 148–50. http://dx.doi.org/10.1587/transele.e93.c.148.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Giustolisi, Gianluca, Alfio Dario Grasso, and Salvatore Pennisi. "High-Drive and Linear CMOS Class-AB Pseudo-Differential Amplifier." IEEE Transactions on Circuits and Systems II: Express Briefs 54, no. 2 (2007): 112–16. http://dx.doi.org/10.1109/tcsii.2006.886239.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Manfredini, Giuseppe, Alessandro Catania, Lorenzo Benvenuti, Mattia Cicalini, Massimo Piotto, and Paolo Bruschi. "Ultra-Low-Voltage Inverter-Based Amplifier with Novel Common-Mode Stabilization Loop." Electronics 9, no. 6 (2020): 1019. http://dx.doi.org/10.3390/electronics9061019.

Pełny tekst źródła
Streszczenie:
This work presents a single-stage, inverter-based, pseudo-differential amplifier that can work with ultra-low supply voltages. A novel common-mode stabilization loop allows proper differential operations, without impacting over the output differential performance. Electrical simulations show the effectiveness of this amplifier for supply voltages in the range of 0.3–0.5 V. In particular, a dc voltage gain of 25.16 dB, a gain-bandwidth product of 131.9 kHz with a capacitive load of 10 pF, and a static current consumption of only 557 nA are estimated at VDD = 0.5 V. Moreover, the circuit behavio
Style APA, Harvard, Vancouver, ISO itp.
6

Babaeinik, Majid, Massoud Dousti та Mohammad Bagher Tavakoli. "A High Bandwidth (DC-40 GHz) Pseudo Differential Distributed Amplifier in 0.18-μm RF CMOS". Journal of Circuits, Systems and Computers 26, № 12 (2017): 1750191. http://dx.doi.org/10.1142/s0218126617501912.

Pełny tekst źródła
Streszczenie:
This study presents a CMOS distributed amplifier (DA) with pseudo differential amplifying that achieves DC-40[Formula: see text]GHz bandwidth (BW) in 0.18-[Formula: see text]m RF CMOS process. The DA with three-stage amplifying cells was proposed to improve the DA performance. The inter-stage was composed of pseudo differential amplifying for bandwidth extension. By incorporating the pseudo differential amplifier configuration and capacitor-less circuit in the stages, the DA provides average gain and high bandwidth. The simulation results showed that the DA has a S[Formula: see text] of 6.4[Fo
Style APA, Harvard, Vancouver, ISO itp.
7

Kasipogula, Bhaskara Rao, and Gurumurthy Komanapalli. "A chopper amplifier with adaptive biasing OTA for biomedical applications, featuring high gain and CMRR." PLOS ONE 19, no. 11 (2024): e0313423. http://dx.doi.org/10.1371/journal.pone.0313423.

Pełny tekst źródła
Streszczenie:
This paper presents a design of fully differential chopper amplifier employing the flipped voltage follower (FVF) adaptive biasing technique, focusing on its potential use in biopotential recording applications. The suggested architectural OTA incorporates self-cascoded current mirrors (SCCMs) as the active load to achieve a substantial output swing. The FVFs based adaptive biasing approach for the differential input stage boosts extra current and enhances gain and dynamic characteristics. The chopper amplifier attains a common mode rejection ratio (CMRR) of more than 100 dB through the strate
Style APA, Harvard, Vancouver, ISO itp.
8

Ballo, Andrea, Alfio Dario Grasso, and Salvatore Pennisi. "0.4-V, 81.3-nA Bulk-Driven Single-Stage CMOS OTA with Enhanced Transconductance." Electronics 11, no. 17 (2022): 2704. http://dx.doi.org/10.3390/electronics11172704.

Pełny tekst źródła
Streszczenie:
The paper describes a single-stage operational transconductance amplifier suitable for very-low-voltage operation in power-constrained applications. The proposed circuit avoids the tail current generator in the differential pair while preventing pseudo-differential operation. Moreover, the adoption of positive feedback allows increasing the stage transconductance while minimizing the current consumption. Experimental measurements on prototypes implemented in a standard CMOS 180-nm technology, show superior performance as compared to the state of the art.
Style APA, Harvard, Vancouver, ISO itp.
9

Karami Horestani, Fatemeh, Zahra Karami Horastani, and Niclas Björsell. "A Band-Pass Instrumentation Amplifier Based on a Differential Voltage Current Conveyor for Biomedical Signal Recording Applications." Electronics 11, no. 7 (2022): 1087. http://dx.doi.org/10.3390/electronics11071087.

Pełny tekst źródła
Streszczenie:
Recently, due to their abundant benefits, current-mode instrumentation amplifiers have received considerable attention in medical instrumentation and read-out circuit for biosensors. This paper is focused on the design of current-mode instrumentation amplifiers for portable, implantable, and wearable electrocardiography and electroencephalography applications. To this end, a CMOS differential voltage second-generation current conveyor (DVCCII) based on a linear transconductor is presented. A new band-pass instrumentation amplifier, based on the designed DVCCII, is also implemented in this pape
Style APA, Harvard, Vancouver, ISO itp.
10

Wang, Zhiqiang, Xiaosong Wang, and Yu Liu. "A Wideband Power Amplifier in 65 nm CMOS Covering 25.8 GHz–36.9 GHz by Staggering Tuned MCRs." Electronics 12, no. 17 (2023): 3566. http://dx.doi.org/10.3390/electronics12173566.

Pełny tekst źródła
Streszczenie:
Broadband millimeter-wave power amplifiers have attracted much attention and have wide applications for 5G communication, satellite communication, radar, sensing, etc. Yet, it is challenging to design a power amplifier with broadband small-signal gain and power performance simultaneously. In this study, a transformer-based symmetrical magnetically coupled resonator (MCR) matching network for broadband output matching and stagger-tuned MCRs are used to achieve both broadband small- and large-signal performance. Also, to enhance the gain for the power amplifier, a three-stage common-source pseud
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Pseudo-differential amplifier"

1

Peng, Kuei-Feng, and 彭貴鋒. "A Study of Low-Voltage High Swing Pseudo-Differential Amplifier." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/24916825900814415704.

Pełny tekst źródła
Streszczenie:
碩士<br>高苑科技大學<br>電子工程研究所<br>98<br>This paper presents a low-voltage operating under 1.2-V CMOS pseudo-differential amplifier with simple CMFB circuit. The proposed circuit employs the complementary common mode feedback (CMFB) consisting of common mode detector, transimpedance and transconductance amplifiers. The simulation results using HSPICE with TSMC 0.18μm CMOS mixed-signal process technology shows high output swing achieved with low common mode gain. The differential output swing of the circuit is ± 0.6 V. The power dissipation of the circuit is 0.439 mW, the differential mode gain is 30 d
Style APA, Harvard, Vancouver, ISO itp.
2

Chang, Yen-Shuo, and 張晏碩. "On the Design of a Low Voltage Pseudo Differential Operational Transconductance Amplifier with Common Mode and HD3 Feed Forward Cancellation Technologies." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/40563080582167111030.

Pełny tekst źródła
Streszczenie:
碩士<br>逢甲大學<br>電子工程所<br>100<br>A pseudo differential Operational Transconductance Amplifier (OTA) has been proposed in this research. This OTA can operate at low supply voltage with high linearity. Here, we use two technologies, one of them is common mode feed forward and the other is HD3 feed forward. Simulation results show that the common mode rejection ratio (CMRR) is 68.6dB and third harmonic distortion (HD3) is -66.6dB. This OTA consumes 75.8μW for the power dissipation. The chip has been manufactured in a 0.18μm-CMOS technology. The chip area is 0.69x0.38 mm2.
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Pseudo-differential amplifier"

1

Suadet, Apirak, and Varakorn Kasemsuwan. "A 1 Volt CMOS Pseudo Differential Amplifier." In TENCON 2006 - 2006 IEEE Region 10 Conference. IEEE, 2006. http://dx.doi.org/10.1109/tencon.2006.344016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Suadet, A., and V. Kasemsuwan. "A CMOS inverter-based class-AB pseudo differential amplifier for HF applications." In 2010 IEEE International Conference of Electron Devices and Solid- State Circuits (EDSSC). IEEE, 2010. http://dx.doi.org/10.1109/edssc.2010.5713694.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Sil, Abhijit, Eswar Prasad Kolli, Soumik Ghosh, and Magdy Bayoumi. "High speed single-ended pseudo differential current sense amplifier for SRAM cell." In 2008 IEEE International Symposium on Circuits and Systems - ISCAS 2008. IEEE, 2008. http://dx.doi.org/10.1109/iscas.2008.4542171.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Chen, Pengwei, Jin He, Jiang Luo, et al. "Fully integrated pseudo differential K-band power amplifier in 0.13um standard CMOS." In 2016 International Symposium on Integrated Circuits (ISIC). IEEE, 2016. http://dx.doi.org/10.1109/isicir.2016.7829728.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kawano, Y., T. Suzuki, M. Sato, et al. "20-GHz, 20-dBm pseudo-differential power amplifier in standard 90-nm CMOS." In 2008 Asia Pacific Microwave Conference. IEEE, 2008. http://dx.doi.org/10.1109/apmc.2008.4958349.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Donepudi, Sagarika, Michael Koberle, and Wolfgang Horn. "Advanced Pseudo Differential Amplifier with Output Common Mode Regulation and Phase Shift Retention." In 2016 Austrochip Workshop on Microelectronics (Austrochip). IEEE, 2016. http://dx.doi.org/10.1109/austrochip.2016.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Chang, Yen-Shuo, Hong-Chong Wu, Miin-Shyue Shiau, Don-Gey Liu, and Heng-shou Hsu. "Pseudo differential operational transconductance amplifier using common mode feed forward and HD3 feed forward." In 2011 International Symposium on Integrated Circuits (ISIC). IEEE, 2011. http://dx.doi.org/10.1109/isicir.2011.6131943.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Wenyuan, Li, and Zhang Qian. "A 0.7–1.9GHz broadband pseudo-differential power amplifier using 0.13-μm SiGe HBT technology." In 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2012. http://dx.doi.org/10.1109/icmmt.2012.6230304.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Lam, Eythan, Andrea Arias-Purdue, Everett O'Malley, and James F. Buckwalter. "A 23.5-dBm, 7.9%-PAE Pseudo-differential Power Amplifier at 136 GHz in 40-nm GaN." In 2022 17th European Microwave Integrated Circuits Conference (EuMIC). IEEE, 2022. http://dx.doi.org/10.23919/eumic54520.2022.9923465.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Shahroury, Fadi R., and Ishraq Riad. "The Design and Optimization of Low-Voltage Pseudo Differential Pair Operational Transconductance Amplifier in 130 nm CMOS Technology." In 2016 UKSim-AMSS 18th International Conference on Computer Modelling and Simulation (UKSim). IEEE, 2016. http://dx.doi.org/10.1109/uksim.2016.17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!