Gotowa bibliografia na temat „Pythagorean n-tuples”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Pythagorean n-tuples”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Pythagorean n-tuples"

1

Wadhawan, Narinder. "SELF GENERATING n-TUPLES." Graduate Journal of Interdisciplinary Research, Reports and Reviews 1, no. 1 (2023): 18–27. https://doi.org/10.34256/gjir3.v1i1.5.

Pełny tekst źródła
Streszczenie:
Background: The Pythagorean triple based on Pythagorean Theorem, were known in to ancient Babylon and Egypt. The interrelation of the three was known as far back as thousands of years, but it was Pythagoras who explicitly explained their equation.Purpose: Different methods have been put forth by the mathematicians for generation of Pythagorean’s triple and n-tuples but this paper provides a unique method how these get self-generated by use of simple algebraic expansions.Methods: An algebraic quantity (a+b) squared equals to (a-b) squared plus 4ab and if a or b is assigned such a value that mak
Style APA, Harvard, Vancouver, ISO itp.
2

Cass, Daniel, and Pasquale J. Arpaia. "Matrix Generation of Pythagorean n-Tuples." Proceedings of the American Mathematical Society 109, no. 1 (1990): 1. http://dx.doi.org/10.2307/2048355.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Cass, Daniel, and Pasquale J. Arpaia. "Matrix generation of Pythagorean $n$-tuples." Proceedings of the American Mathematical Society 109, no. 1 (1990): 1. http://dx.doi.org/10.1090/s0002-9939-1990-1000148-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Oliverio, Paul. "Self-Generating Pythagorean Quadruples and N -Tuples." Fibonacci Quarterly 34, no. 2 (1996): 98–101. http://dx.doi.org/10.1080/00150517.1996.12429074.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Wadhawan, Narinder Kumar, and Priyanka Wadhawan. "A NEW APPROACH TO GENERATE FORMULAE FOR PYTHAGOREANS TRIPLES, QUADRUPLES AND THEIR GENERALISATION TO N-TUPLES." jnanabha 50, no. 02 (2020): 200–211. http://dx.doi.org/10.58250/jnanabha.2020.50224.

Pełny tekst źródła
Streszczenie:
In this paper, innovative methods have been devised to generate formulae for Pythagorean’s Triples, Quadruples and these are finally generalised to generate Pythagorean’s n-tuples. First method utilises formula for solution of a quadratic equation and generate two sets of Pythagorean’s Triples. Second method determines universal identities that satisfy Pythagorean’s Triples, Quadruples so on up to n-tuples. These methods are unprecedented, easy to derive at and hence are comprehensible to students and scholars alike.
Style APA, Harvard, Vancouver, ISO itp.
6

Song, Haizhou, and Wang Qiufen. "Property and Representation of n-Order Pythagorean Matrix." Mathematical Problems in Engineering 2020 (March 24, 2020): 1–10. http://dx.doi.org/10.1155/2020/2857417.

Pełny tekst źródła
Streszczenie:
Here we study the character and expression of n-order Pythagorean matrix using number theory. Theories of Pythagorean matrix are obtained. Using related algebra skills, we prove that the set which constitutes all n-order Pythagorean matrices is a finitely generated group of matrix multiplication and gives a generated tuple of this finitely generated group (n≤10) simultaneously.
Style APA, Harvard, Vancouver, ISO itp.
7

Güler, Erhan, Yusuf Yaylı, and Magdalena Toda. "Differential Geometry and Matrix-Based Generalizations of the Pythagorean Theorem in Space Forms." Mathematics 13, no. 5 (2025): 836. https://doi.org/10.3390/math13050836.

Pełny tekst źródła
Streszczenie:
In this work, we consider Pythagorean triples and quadruples using fundamental form matrices of hypersurfaces in three- and four-dimensional space forms and illustrate various figures. Moreover, we generalize that an immersed hypersphere Mn with radius r in an (n+1)-dimensional Riemannian space form Mn+1(c), where the constant sectional curvature is c∈{−1,0,1}, satisfies the (n+1)-tuple Pythagorean formula Pn+1. Remarkably, as the dimension n→∞ and the fundamental form N→∞, we reveal that the radius of the hypersphere converges to r→12. Finally, we propose that the determinant of the Pn+1 form
Style APA, Harvard, Vancouver, ISO itp.
8

AMATO, Roberto. "Characterization of Diophantine Equations a + y^2 = z^2, Pythagorean n-Tuples, and Algebraic Structures." International Journal of Mathematics and Mathematical Sciences 2025 (May 24, 2025). https://doi.org/10.1155/ijmm/5516311.

Pełny tekst źródła
Streszczenie:
Let N, Z, and Q be the sets of natural, integers, and rational numbers, respectively. Our objective, involving a predeterminedpositive integer a, is to study a characterization of Diophantine equations of the form a + y^2 = z^2 . Building on this result, we aim to obtain a characterization for Pythagorean n-tuples. Furthermore, we seek to prove the existence of a commutative infinitemonoid in the set of Diophantine equations a + y^2 = z^2 with elements in N. Additionally, we intend to establish a commutative infinite monoid with elements in N or Z on the set of Pythagorean quadruples. Mor
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Pythagorean n-tuples"

1

Thiruchinapalli, Srinivas, and C. Ashok Kumar. "Construction of Pythagorean and Reciprocal Pythagorean n-tuples." In Springer Proceedings in Mathematics & Statistics. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-51163-9_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!