Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: QED de cavité.

Artykuły w czasopismach na temat „QED de cavité”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „QED de cavité”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Lechner, Daniel, Riccardo Pennetta, Martin Blaha, Philipp Schneeweiss, Jürgen Volz i Arno Rauschenbeutel. "Experimental investigation of light-matter interaction when transitioning from cavity QED to waveguide QED". EPJ Web of Conferences 266 (2022): 11006. http://dx.doi.org/10.1051/epjconf/202226611006.

Pełny tekst źródła
Streszczenie:
Cavity quantum electrodynamics (cavity QED) is conventionally described by the Jaynes- or Tavis-Cummings model, where quantum emitters couple to a single-mode cavity. The opposite scenario, in which an ensemble of emitters couples to a single spatial mode of a propagating light field, is described by waveguide QED, where emitters interact with a continuum of frequency modes. Here we present an experiment where an ensemble of cold atoms strongly couples to a fiber-ring resonator with variable length containing an optical nanofiber. By changing the length of the resonator we can tailor the density of frequency modes and thus explore the transition from cavity QED to waveguide QED. We analyse the response of the ensemble–cavity system after the sudden switch-on of resonant laser light and find that for progressively longer resonators, the Rabi oscillations typical of cavity QED disappear and the single-pass dynamics of waveguide QED appear. Our measurements shed light on the interplay between the single-pass collective response of the atoms to the propagating cavity field and the ensemble–cavity dynamics.
Style APA, Harvard, Vancouver, ISO itp.
2

Zhang Lei, 张蕾. "基于腔QED制备三粒子singlet态". Laser & Optoelectronics Progress 58, nr 23 (2021): 2327002. http://dx.doi.org/10.3788/lop202158.2327002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

YE, LIU, i GUANG-CAN GUO. "ENTANGLEMENT CONCENTRATION AND A QUANTUM REPEATER IN CAVITY QED". International Journal of Quantum Information 03, nr 02 (czerwiec 2005): 351–57. http://dx.doi.org/10.1142/s0219749905001018.

Pełny tekst źródła
Streszczenie:
A scheme of quantum concentration for unknown atomic entangled states via cavity QED is proposed. During the preparation and the joint measurement of quantum states, the cavity is only virtually excited; thus, the scheme is insensitive to the cavity field states and the cavity decay. In the meanwhile, our setup also provides a demonstration of a quantum repeater in cavity QED in principle.
Style APA, Harvard, Vancouver, ISO itp.
4

YANG, ZHEN, WEN-HAI ZHANG i LIU YE. "SCHEME TO IMPLEMENT THE OPTIMAL ASYMMETRIC ECONOMICAL 1 → 2 PHASE-COVARIANT TELECLONING VIA CAVITY-QED". International Journal of Quantum Information 06, nr 02 (kwiecień 2008): 317–23. http://dx.doi.org/10.1142/s0219749908003426.

Pełny tekst źródła
Streszczenie:
We propose an experimentally feasible scheme to implement the optimal asymmetric economical 1 → 2 phase-covariant telecloning, which works without ancilla, based on Cavity-QED. Our scheme is insensitive to the cavity field states and cavity decay. During the telecloning process, the cavity is only virtually excited, thus it greatly prolongs the efficient decoherent time. Therefore, the scheme can be experimentally realized in the range of current cavity QED techniques.
Style APA, Harvard, Vancouver, ISO itp.
5

Wang, Yahong, i Changshui Yu. "Minimum remote state preparation of an arbitrary two-level one-atom state via cavity QED". International Journal of Quantum Information 13, nr 02 (marzec 2015): 1550009. http://dx.doi.org/10.1142/s0219749915500094.

Pełny tekst źródła
Streszczenie:
In this paper, we propose three schemes for remotely state preparation (RSP) an arbitrary two-level one-atom state via cavity quantum electro dynamics (QED) with minimal resources consumption. In the first case, a Greenberger–Horne–Zeilinger (GHZ) state is used as quantum channel; in the second case, the sender needs to construct an quantum channel with both of the assistant of cavity QED and the knowledge about the state to be remotely prepared. In each scheme, only 1 cbit and 1 ebit are needed with the aid of cavity QED. In the third case, we combine the first two protocols and give a theoretical proposal for controlled RSP with only 2 cbits and 1 ebit resources consumption.
Style APA, Harvard, Vancouver, ISO itp.
6

XUE, ZHENG-YAUN, PING DONG, YOU-MIN YI i ZHUO-LIANG CAO. "QUANTUM STATE SHARING VIA THE GHZ STATE IN CAVITY QED WITHOUT JOINT MEASUREMENT". International Journal of Quantum Information 04, nr 05 (październik 2006): 749–59. http://dx.doi.org/10.1142/s0219749906002201.

Pełny tekst źródła
Streszczenie:
We investigate schemes to securely distribute and reconstruct single-qubit and two-qubit arbitrary quantum states between two parties via tripartite GHZ states in cavity QED without joint measurement. Our schemes offer a simple way of demonstrating quantum state sharing in cavity QED. We also consider the generalization of our schemes to distribute and reconstruct a quantum state among many parties.
Style APA, Harvard, Vancouver, ISO itp.
7

LIU, CHUAN-LONG, YAN-WEI WANG i YI-ZHUANG ZHENG. "IMPLEMENTATION OF NON-LOCAL TOFFOLI GATE VIA CAVITY QUANTUM ELECTRODYNAMICS". International Journal of Quantum Information 07, nr 03 (kwiecień 2009): 669–80. http://dx.doi.org/10.1142/s0219749909003329.

Pełny tekst źródła
Streszczenie:
A scheme for realizing the non-local Toffoli gate among three spatially separated nodes through cavity quantum electrodynamics (C-QED) is presented. The scheme can obtain high fidelity in the current C-QED system. With entangled qubits as quantum channels, the operation is resistive to actual environment noise.
Style APA, Harvard, Vancouver, ISO itp.
8

Said, Taoufik, Abdelhaq Chouikh, Karima Essammouni i Mohamed Bennai. "Realizing an N-two-qubit quantum logic gate in a cavity QED with nearest qubit--qubit interaction". Quantum Information and Computation 16, nr 5&6 (kwiecień 2016): 465–82. http://dx.doi.org/10.26421/qic16.5-6-4.

Pełny tekst źródła
Streszczenie:
We propose an effective way for realizing a three quantum logic gates (NTCP gate, NTCP-NOT gate and NTQ-NOT gate) of one qubit simultaneously controlling N target qubits based on the qubit-qubit interaction. We use the superconducting qubits in a cavity QED driven by a strong microwave field. In our scheme, the operation time of these gates is independent of the number N of qubits involved in the gate operation. These gates are insensitive to the initial state of the cavity QED and can be used to produce an analogous CNOT gate simultaneously acting on N qubits. The quantum phase gate can be realized in a time (nanosecond-scale) much smaller than decoherence time and dephasing time (microsecond-scale) in cavity QED. Numerical simulation under the influence of the gate operations shows that the scheme could be achieved efficiently within current state-of-the-art technology.
Style APA, Harvard, Vancouver, ISO itp.
9

Chang, D. E., L. Jiang, A. V. Gorshkov i H. J. Kimble. "Cavity QED with atomic mirrors". New Journal of Physics 14, nr 6 (1.06.2012): 063003. http://dx.doi.org/10.1088/1367-2630/14/6/063003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Imamoglu, Atac. "Cavity-QED Using Quantum Dots". Optics and Photonics News 13, nr 8 (1.08.2002): 22. http://dx.doi.org/10.1364/opn.13.8.000022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Le Thomas, N., U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes i U. Banin. "Cavity QED with Semiconductor Nanocrystals". Nano Letters 6, nr 3 (marzec 2006): 557–61. http://dx.doi.org/10.1021/nl060003v.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Haroche, S. "Mesoscopic coherences in cavity QED". Il Nuovo Cimento B 110, nr 5-6 (maj 1995): 545–56. http://dx.doi.org/10.1007/bf02741464.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

González, Joanna, i Miguel Orszag. "Quantum Cloning and Cavity QED". Open Systems & Information Dynamics 11, nr 04 (grudzień 2004): 377–83. http://dx.doi.org/10.1007/s11080-004-6628-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Gerry, Christopher C. "Cavity QED analog of spin". Journal of Modern Optics 44, nr 11-12 (listopad 1997): 2159–71. http://dx.doi.org/10.1080/09500349708231876.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Prants, S. V., i M. Yu Uleysky. "Quantum instability in cavity QED". Journal of Experimental and Theoretical Physics Letters 82, nr 12 (grudzień 2005): 748–52. http://dx.doi.org/10.1134/1.2175242.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Lange, Wolfgang, i Jean-Michel Gerard. "Focus section on Cavity QED". Journal of Optics B: Quantum and Semiclassical Optics 6, nr 2 (1.02.2004): 117–18. http://dx.doi.org/10.1088/1464-4266/6/2/e03.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Haroche, S. "Entanglement experiments in cavity QED". Fortschritte der Physik 51, nr 45 (7.05.2003): 388–95. http://dx.doi.org/10.1002/prop.200310052.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

ZHANG, WEN–HAI, LIU YE i JIE-LIN DAI. "SCHEME TO IMPLEMENT GENERAL PHASE-COVARIANT QUANTUM CLONING". International Journal of Quantum Information 04, nr 05 (październik 2006): 761–68. http://dx.doi.org/10.1142/s0219749906002262.

Pełny tekst źródła
Streszczenie:
We propose an experimentally feasible scheme to implement the optimal general 1→2 phase-covariant quantum cloning machine based on cavity QED. In the scheme, the cavity is only virtually excited and thus the scheme is insensitive to the cavity field states and cavity decay.
Style APA, Harvard, Vancouver, ISO itp.
19

Li, Ming, Wei Chen i Junli Gao. "A Coherence Preservation Control Strategy in Cavity QED Based on Classical Quantum Feedback". Scientific World Journal 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/340917.

Pełny tekst źródła
Streszczenie:
For eliminating the unexpected decoherence effect in cavity quantum electrodynamics (cavity QED), the transfer function of Rabi oscillation is derived theoretically using optical Bloch equations. In particular, the decoherence in cavity QED from the atomic spontaneous emission is especially considered. A feedback control strategy is proposed to preserve the coherence through Rabi oscillation stabilization. In the scheme, a classical quantum feedback channel for the quantum information acquisition is constructed via the quantum tomography technology, and a compensation system based on the root locus theory is put forward to suppress the atomic spontaneous emission and the associated decoherence. The simulation results have proved its effectiveness and superiority for the coherence preservation.
Style APA, Harvard, Vancouver, ISO itp.
20

NOH, CHANGSUK, i DIMITRIS G. ANGELAKIS. "SIMULATING TOPOLOGICAL EFFECTS WITH PHOTONS IN COUPLED QED CAVITY ARRAYS". International Journal of Modern Physics B 28, nr 02 (15.12.2013): 1441003. http://dx.doi.org/10.1142/s0217979214410033.

Pełny tekst źródła
Streszczenie:
We provide a pedagogical account of an early proposal realizing fractional quantum Hall effect (FQHE) using coupled quantum electrodynamics (QED) cavity arrays (CQCAs). We start with a brief introduction on the basics of quantum Hall effects and then review the early proposals in the simulation of spin-models and fractional quantum Hall (FQH) physics with photons in coupled atom-cavity arrays. We calculate the energy gap and the overlap between the ground state of the system and the corresponding Laughlin wavefunction to analyze the FQH physics arising in the system and discuss possibilities to reach the ground state using adiabatic methods used in Cavity QED.
Style APA, Harvard, Vancouver, ISO itp.
21

Wineland, David, J. Ignacio Cirac i Richard Jozsa. "Editorial Note". Quantum Information and Computation 1, nr 2 (sierpień 2001): 1–2. http://dx.doi.org/10.26421/qic1.2-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

XIONG, WEI, TAO WU i LIU YE. "REALIZATION OF NONLOCAL QUANTUM GATE THROUGH ASSISTED-CAVITIES". International Journal of Quantum Information 10, nr 02 (marzec 2012): 1250011. http://dx.doi.org/10.1142/s0219749912500116.

Pełny tekst źródła
Streszczenie:
We propose a scheme for implementing a three-qubit controlled-Not-Not (CNNOT) gate and a two-qubit SWAP gate between atoms and single-photon pulse through cavity QED. In the scheme, we can one-step realize multiple-qubit GHZ state and two-qubit Bell state by applying multiple-qubits CNNOT gate. We have also shown that our scheme would be robust against practical imperfections in current cavity QED experiment setup through simple numerical estimates. Finally, we provide the current parameters to show that our scheme is feasible.
Style APA, Harvard, Vancouver, ISO itp.
23

Tarallo, Marco G. "Toward a quantum-enhanced strontium optical lattice clock at INRIM". EPJ Web of Conferences 230 (2020): 00011. http://dx.doi.org/10.1051/epjconf/202023000011.

Pełny tekst źródła
Streszczenie:
The new strontium atomic clock at INRIM seeks to establish a new frontier in quantum measurement by joining state-of-the-art optical lattice clocks and the quantized electromagnetic field provided by a cavity QED setup. The goal of our experiment is to apply advanced quantum techniques to state-of-the-art optical lattice clocks, demonstrating enhanced sensitivity while preserving long coherence times and the highest accuracy. In this paper we describe the current status of the experiment and the prospected sensitivity gain for the designed cavity QED setup.
Style APA, Harvard, Vancouver, ISO itp.
24

YANG, MING, YOU-MING YI i ZHUO-LIANG CAO. "SCHEME FOR PREPARATION OF W STATE VIA CAVITY QED". International Journal of Quantum Information 02, nr 02 (czerwiec 2004): 231–35. http://dx.doi.org/10.1142/s021974990400016x.

Pełny tekst źródła
Streszczenie:
In this paper, we presented a physical scheme to generate the multi-cavity maximally entangled W state via cavity QED. All the operations needed in this scheme are to modulate the interaction time only once.
Style APA, Harvard, Vancouver, ISO itp.
25

Yuge, Tatsuro, Kenji Kamide, Makoto Yamaguchi i Tetsuo Ogawa. "Cavity-Loss Induced Plateau in Coupled Cavity QED Array". Journal of the Physical Society of Japan 83, nr 12 (15.12.2014): 123001. http://dx.doi.org/10.7566/jpsj.83.123001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Ye, Liu, i Guang-Can Guo. "Transferring a cavity field entangled state in cavity QED". Journal of Optics B: Quantum and Semiclassical Optics 7, nr 8 (11.07.2005): 212–14. http://dx.doi.org/10.1088/1464-4266/7/8/002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Mabuchi, H., M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, A. Scherer i S. J. van Enk. "Quantum networks based on cavity QED". Quantum Information and Computation 1, Special (grudzień 2001): 7–12. http://dx.doi.org/10.26421/qic1.s-3.

Pełny tekst źródła
Streszczenie:
We review an ongoing program of interdisciplinary research aimed at developing hardware and protocols for quantum communication networks. Our primary experimental goals are to demonstrate quantum state mapping from storage/processing media (internal states of trapped atoms) to transmission media (optical photons), and to investigate a nanotechnology paradigm for cavity QED that would involve the integration of magnetic microtraps with photonic bandgap structures.
Style APA, Harvard, Vancouver, ISO itp.
28

Bastarrachea-Magnani, Miguel Angel, Baldemar López-del-Carpio, Jorge Chávez-Carlos, Sergio Lerma-Hernández i Jorge G. Hirsch. "Regularity and chaos in cavity QED". Physica Scripta 92, nr 5 (19.04.2017): 054003. http://dx.doi.org/10.1088/1402-4896/aa6640.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Rice, P. R., J. Gea-Banacloche, M. L. Terraciano, D. L. Freimund i L. A. Orozco. "Steady State Entanglement in Cavity QED". Optics Express 14, nr 10 (2006): 4514. http://dx.doi.org/10.1364/oe.14.004514.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Larson, J. "Wave packet methods in cavity QED". Journal of Physics: Conference Series 99 (1.02.2008): 012011. http://dx.doi.org/10.1088/1742-6596/99/1/012011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Bužek, V., G. Drobný, M. S. Kim, G. Adam i P. L. Knight. "Cavity QED with cold trapped ions". Physical Review A 56, nr 3 (1.09.1997): 2352–60. http://dx.doi.org/10.1103/physreva.56.2352.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Spehner, D., i M. Orszag. "Quantum jump dynamics in cavity QED". Journal of Mathematical Physics 43, nr 7 (lipiec 2002): 3511–37. http://dx.doi.org/10.1063/1.1476392.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Hughes, Stephen, Marten Richter i Andreas Knorr. "Quantized pseudomodes for plasmonic cavity QED". Optics Letters 43, nr 8 (11.04.2018): 1834. http://dx.doi.org/10.1364/ol.43.001834.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Orszag, Miguel, Nellu Ciobanu, Raul Coto i Vitalie Eremeev. "Quantum correlations in cavity QED networks". Journal of Modern Optics 62, nr 8 (18.07.2014): 593–607. http://dx.doi.org/10.1080/09500340.2014.940020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Ye, Tian-Yu. "Quantum Private Comparison via Cavity QED". Communications in Theoretical Physics 67, nr 2 (luty 2017): 147. http://dx.doi.org/10.1088/0253-6102/67/2/147.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Semião, F. L. "Single-mode two-channel cavity QED". Journal of Physics B: Atomic, Molecular and Optical Physics 41, nr 8 (3.04.2008): 081004. http://dx.doi.org/10.1088/0953-4075/41/8/081004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Aqil, Muhammad, Aarouj, Fauzia Bano i Farhan Saif. "Engineering noon states in cavity QED". Journal of Russian Laser Research 31, nr 4 (lipiec 2010): 343–49. http://dx.doi.org/10.1007/s10946-010-9154-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

van Enk, S. J., H. J. Kimble i H. Mabuchi. "Quantum Information Processing in Cavity-QED". Quantum Information Processing 3, nr 1-5 (październik 2004): 75–90. http://dx.doi.org/10.1007/s11128-004-3104-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Bruneau, L., i C. A. Pillet. "Thermal Relaxation of a QED Cavity". Journal of Statistical Physics 134, nr 5-6 (9.12.2008): 1071–95. http://dx.doi.org/10.1007/s10955-008-9656-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Esfandiarpour, Saeideh, Hassan Safari i Stefan Yoshi Buhmann. "Cavity-QED interactions of several atoms". Journal of Physics B: Atomic, Molecular and Optical Physics 52, nr 8 (4.04.2019): 085503. http://dx.doi.org/10.1088/1361-6455/aaf6d7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Eleuch, H., J. M. Courty, G. Messin, C. Fabre i E. Giacobino. "Cavity QED effects in semiconductor microcavities". Journal of Optics B: Quantum and Semiclassical Optics 1, nr 1 (1.01.1999): 1–7. http://dx.doi.org/10.1088/1464-4266/1/1/001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Doherty, A. C., A. S. Parkins, S. M. Tan i D. F. Walls. "Effects of motion in cavity QED". Journal of Optics B: Quantum and Semiclassical Optics 1, nr 4 (1.08.1999): 475–82. http://dx.doi.org/10.1088/1464-4266/1/4/320.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Spehner, D., i M. Orszag. "Temperature-enhanced squeezing in cavity QED". Journal of Optics B: Quantum and Semiclassical Optics 4, nr 5 (30.08.2002): 326–35. http://dx.doi.org/10.1088/1464-4266/4/5/315.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Mielke, S. L., G. T. Foster i L. A. Orozco. "Nonclassical Intensity Correlations in Cavity QED". Physical Review Letters 80, nr 18 (4.05.1998): 3948–51. http://dx.doi.org/10.1103/physrevlett.80.3948.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Jabri, H., i H. Eleuch. "Bunching and Antibunching in Cavity QED". Communications in Theoretical Physics 56, nr 1 (lipiec 2011): 134–38. http://dx.doi.org/10.1088/0253-6102/56/1/23.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Rfifi, Saad, i Fatimazahra Siyouri. "Effect of Cavity QED on Entanglement". Foundations of Physics 46, nr 11 (23.06.2016): 1461–70. http://dx.doi.org/10.1007/s10701-016-0024-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Ye, Tian-Yu. "Secure Quantum Dialogue via Cavity QED". International Journal of Theoretical Physics 54, nr 3 (25.07.2014): 772–79. http://dx.doi.org/10.1007/s10773-014-2268-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Vogel, W., i C. Di Fidio. "Cavity QED with a trapped ion". Fortschritte der Physik 51, nr 23 (3.03.2003): 242–48. http://dx.doi.org/10.1002/prop.200310034.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Nayak, N., Biplab Ghosh i A. S. Majumdar. "Environment induced entanglement in cavity-QED". Indian Journal of Physics 84, nr 8 (sierpień 2010): 1039–50. http://dx.doi.org/10.1007/s12648-010-0098-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Yin-Ju, Lu. "Quantum Secret Sharing via Cavity QED". International Journal of Theoretical Physics 59, nr 10 (15.09.2020): 3324–28. http://dx.doi.org/10.1007/s10773-020-04591-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii