Gotowa bibliografia na temat „Quantum electronics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Quantum electronics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Quantum electronics"
Mukhammadova, Dilafruz Ahmadovna. "The Role Of Quantum Electronics In Alternative Energy". American Journal of Applied sciences 03, nr 01 (30.01.2021): 69–78. http://dx.doi.org/10.37547/tajas/volume03issue01-12.
Pełny tekst źródłaZwanenburg, Floris A., Andrew S. Dzurak, Andrea Morello, Michelle Y. Simmons, Lloyd C. L. Hollenberg, Gerhard Klimeck, Sven Rogge, Susan N. Coppersmith i Mark A. Eriksson. "Silicon quantum electronics". Reviews of Modern Physics 85, nr 3 (10.07.2013): 961–1019. http://dx.doi.org/10.1103/revmodphys.85.961.
Pełny tekst źródłaSAKAKI, H. "Quantum Microstructures and Quantum Wave Electronics." Nihon Kessho Gakkaishi 33, nr 3 (1991): 107–18. http://dx.doi.org/10.5940/jcrsj.33.107.
Pełny tekst źródłaGuo, Cheng, Jin Lin, Lian-Chen Han, Na Li, Li-Hua Sun, Fu-Tian Liang, Dong-Dong Li i in. "Low-latency readout electronics for dynamic superconducting quantum computing". AIP Advances 12, nr 4 (1.04.2022): 045024. http://dx.doi.org/10.1063/5.0088879.
Pełny tekst źródłaBorgarino, Mattia, i Alessandro Badiali. "Quantum Gates for Electronics Engineers". Electronics 12, nr 22 (15.11.2023): 4664. http://dx.doi.org/10.3390/electronics12224664.
Pełny tekst źródłaLiu, Mengxia, Nuri Yazdani, Maksym Yarema, Maximilian Jansen, Vanessa Wood i Edward H. Sargent. "Colloidal quantum dot electronics". Nature Electronics 4, nr 8 (sierpień 2021): 548–58. http://dx.doi.org/10.1038/s41928-021-00632-7.
Pełny tekst źródłaTaichenachev, Alexey V. "Department of Quantum Electronics". Siberian Journal of Physics 1, nr 1 (2006): 83–84. http://dx.doi.org/10.54238/1818-7994-2006-1-1-83-84.
Pełny tekst źródłaSinclair, B. D. "Lasers and quantum electronics". Physics Bulletin 37, nr 10 (październik 1986): 412. http://dx.doi.org/10.1088/0031-9112/37/10/013.
Pełny tekst źródłaDragoman, M., i D. Dragoman. "Graphene-based quantum electronics". Progress in Quantum Electronics 33, nr 6 (listopad 2009): 165–214. http://dx.doi.org/10.1016/j.pquantelec.2009.08.001.
Pełny tekst źródłaRost, Jan-Michael. "Tubes for quantum electronics". Nature Photonics 4, nr 2 (luty 2010): 74–75. http://dx.doi.org/10.1038/nphoton.2009.279.
Pełny tekst źródłaRozprawy doktorskie na temat "Quantum electronics"
Li, Elise Yu-Tzu. "Electronic structure and quantum conductance of molecular and nano electronics". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65270.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 129-137).
This thesis is dedicated to the application of a large-scale first-principles approach to study the electronic structure and quantum conductance of realistic nanomaterials. Three systems are studied using Landauer formalism, Green's function technique and maximally localized Wannier functions. The main focus of this thesis lies on clarifying the effect of chemical modifications on electron transport at the nanoscale, as well as on predicting and designing new type of molecular and nanoelectronic devices. In the first study, we suggest and investigate a quantum interference effect in the porphyrin family molecules. We show that the transmission through a porphyrin molecule at or near the Fermi level varies by orders of magnitude following hydrogen tautomerization. The switching behavior identified in porphyrins implies new application directions in single molecular devices and molecular-size memory elements. Moving on from single molecules to a larger scale, we study the effect of chemical functionalizations to the transport properties of carbon nanotubes. We propose several covalent functionalization schemes for carbon nanotubes which display switchable on/off conductance in metallic tubes. The switching action is achieved by reversible control of bond-cleavage chemistry in [1+2] cycloadditions, via the 8p 3 8s p 2 rehybridization it induces; this leads to remarkable changes of conductance even at very low degrees of functionalization. Several strategies for real-time control on the conductance of carbon nanotubes are then proposed. Such designer functional groups would allow for the first time direct control of the electrical properties of metallic carbon nanotubes, with extensive applications in nanoscale devices. In the last part of the thesis we address the issue of low electrical conductivity observed in carbon nanotube networks. We characterize intertube tunneling between carbon nanotube junctions with or without a covalent linker, and explore the possibility of improving intertube coupling and enhance electrical tunneling by transition metal adsorptions on CNT surfaces. The strong hybridization between transition metal d orbitals with the CNT [pi] orbitals serves as an excellent electrical bridge for a broken carbon nanotube junction. The binding and coupling between a transition metal atom and sandwiching nanotubes can be even stronger in case of nitrogendoped carbon nanotubes. Our studies suggest a more effective strategy than the current cross-linking methods used in carbon nanotube networks.
by Elise Yu-Tzu Li.
Ph.D.
Midgley, Stuart. "Quantum waveguide theory". University of Western Australia. School of Physics, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0036.
Pełny tekst źródłaLynch, Alastair M. "Low Cost and Flexible Electronics for Quantum Key Distribution and Quantum Information". Thesis, University of Bristol, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520592.
Pełny tekst źródłaHinzer, Karin. "Semiconductor quantum dot lasers". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0003/MQ36702.pdf.
Pełny tekst źródłaEl, Kass Abdallah. "Milli-Kelvin Electronics at the Quantum-Classical Interface". Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/26889.
Pełny tekst źródłaLittle, Reginald Bernard. "The synthesis and characterization of some II-VI semiconductor quantum dots, quantum shells and quantum wells". Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/30573.
Pełny tekst źródłaNakanishi, Toshihiro. "Coupled-resonator-based metamaterials emulating quantum systems". 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/204563.
Pełny tekst źródłaKhalid, Ahmed Usman. "FPGA emulation of quantum circuits". Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98979.
Pełny tekst źródłaMcNeil, Robert Peter Gordon. "Surface acoustic wave quantum electronic devices". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610718.
Pełny tekst źródłaJiang, Jun. "A Quantum Chemical View of Molecular and Nano-Electronics". Doctoral thesis, Stockholm : Biotechnology, Kungliga tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4335.
Pełny tekst źródłaKsiążki na temat "Quantum electronics"
Salter, Heath. Quantum Electronics. New Delhi: World Technologies, 2011.
Znajdź pełny tekst źródłaKose, Volkmar. Superconducting Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Znajdź pełny tekst źródłaKose, Volkmar, red. Superconducting Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1.
Pełny tekst źródłaVolkmar, Kose, i Albrecht M, red. Superconducting quantum electronics. Berlin: Springer-Verlag, 1989.
Znajdź pełny tekst źródłaProkhorov, A. M., i I. Ursu, red. Trends in Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-10624-2.
Pełny tekst źródłaHirayama, Yoshiro, Kazuhiko Hirakawa i Hiroshi Yamaguchi, red. Quantum Hybrid Electronics and Materials. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1201-6.
Pełny tekst źródłaInstitute of Electrical and Electronics Engineers., red. IEEE journal of quantum electronics. Piscatawy: IEEE, 1986.
Znajdź pełny tekst źródłaIEEE Lasers and Electro-Optics Society. i Institute of Electrical and Electronics Engineers., red. IEEE journal of quantum electronics. [s.l.]: IEEE Lasers and Electro-Optics Society, 1991.
Znajdź pełny tekst źródłaConference on Lasers and Electro-Optics. International quantum electronics conference (IQEC). Washington, D.C: Optical Society of America, 2006.
Znajdź pełny tekst źródłaCzęści książek na temat "Quantum electronics"
Goser, Karl, Peter Glösekötter i Jan Dienstuhl. "Quantum Electronics". W Nanoelectronics and Nanosystems, 151–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05421-5_10.
Pełny tekst źródłaKolawole, Michael Olorunfunmi. "Elements of Quantum Electronics". W Electronics, 271–316. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003052913-9.
Pełny tekst źródłaSuits, Bryan H. "Quantum Logic". W Electronics for Physicists, 305–20. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36364-1_15.
Pełny tekst źródłaKawabata, A. "Quantum Wires". W Mesoscopic Physics and Electronics, 54–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-71976-9_8.
Pełny tekst źródłaPevzner, Vadim, i Karl Hess. "Quantum Ray Tracing: A New Approach to Quantum Transport in Mesoscopic Systems". W Computational Electronics, 227–30. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-2124-9_45.
Pełny tekst źródłaVan Haesendonck, C., i Y. Bruynseraede. "Quantum Interference in Normal Metals". W Superconducting Electronics, 19–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83885-9_2.
Pełny tekst źródłaLübbig, H. "Classical Dynamics of Josephson Tunnelling and Its Quantum Limitations". W Superconducting Quantum Electronics, 2–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_1.
Pełny tekst źródłaGutmann, P., i H. Bachmair. "Cryogenic Current Comparator Metrology". W Superconducting Quantum Electronics, 255–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_10.
Pełny tekst źródłaAlbrecht, M., i W. Kessel. "Fast SQUID Pseudo Random Generators". W Superconducting Quantum Electronics, 269–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_11.
Pełny tekst źródłaBrunk, G. "Modelling of Resistive Networks for Dispersive Tunnel Processes". W Superconducting Quantum Electronics, 24–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Quantum electronics"
Arnold, John M. "Teaching quantum electronics to electronic engineering undergraduates". W Education and Training in Optics and Photonics 2001. SPIE, 2002. http://dx.doi.org/10.1117/12.468723.
Pełny tekst źródłaKrokhin, O. N. "Quantum Electronics 50th Jubilee". W SPIE Proceedings, redaktorzy Yuri N. Kulchin, Jinping Ou, Oleg B. Vitrik i Zhi Zhou. SPIE, 2007. http://dx.doi.org/10.1117/12.726441.
Pełny tekst źródłaSaglamyurek, E., N. Sinclair, J. Jin, J. S. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler i W. Tittel. "Quantum Memory For Quantum Repeaters". W International Quantum Electronics Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/iqec.2011.i93.
Pełny tekst źródłaSchneider, Hans Christian, i Weng W. Chow. "Quantum coherence in semiconductor quantum dots". W International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.ithf2.
Pełny tekst źródła"2005 European Quantum Electronics Conference". W EQEC '05. European Quantum Electronics Conference, 2005. IEEE, 2005. http://dx.doi.org/10.1109/eqec.2005.1567171.
Pełny tekst źródła"Joint Council on Quantum Electronics". W CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452324.
Pełny tekst źródłaBishnoi, Dimple. "Quantum dots: Rethinking the electronics". W INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946309.
Pełny tekst źródłaKrokhin, O. N. "Fifty Years of Quantum Electronics". W ZABABAKHIN SCIENTIFIC TALKS - 2005: International Conference on High Energy Density Physics. AIP, 2006. http://dx.doi.org/10.1063/1.2337172.
Pełny tekst źródłaSenami, Masato, i Akitomo Tachibana. "Quantum chemical approaches to the electronic structures of nano-electronics materials". W 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2010. http://dx.doi.org/10.1109/icsict.2010.5667357.
Pełny tekst źródłaFurusawa, Akira. "Quantum Teleportation and Quantum Information Processing". W Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/qels.2010.qtha1.
Pełny tekst źródłaRaporty organizacyjne na temat "Quantum electronics"
De Heer, Walter A. Epitaxial Graphene Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, maj 2014. http://dx.doi.org/10.21236/ada604108.
Pełny tekst źródłaBocko, Mark F., i Marc J. Feldman. Quantum Computing with Superconducting Electronics. Fort Belvoir, VA: Defense Technical Information Center, luty 1998. http://dx.doi.org/10.21236/ada344625.
Pełny tekst źródłaO'Connell, R. F. Small Systems: Single Electronics/Quantum Transport. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1994. http://dx.doi.org/10.21236/ada298817.
Pełny tekst źródłavan der Heijden, Joost. Optimizing electron temperature in quantum dot devices. QDevil ApS, marzec 2021. http://dx.doi.org/10.53109/ypdh3824.
Pełny tekst źródłaElmgren, Karson, Ashwin Acharya i Will Will Hunt. Superconductor Electronics Research. Center for Security and Emerging Technology, listopad 2021. http://dx.doi.org/10.51593/20210003.
Pełny tekst źródłaBraga, Davide. NECQST: Novel Electronics for Cryogenic Quantum Sensors Technology. Office of Scientific and Technical Information (OSTI), październik 2019. http://dx.doi.org/10.2172/1630711.
Pełny tekst źródłaFluegel, Brian. Fellowship in Physics/Modern Optics and Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, maj 1992. http://dx.doi.org/10.21236/ada253666.
Pełny tekst źródłaGaskill, J. D. Fellowship in Physics/Modern Optics and Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, luty 1990. http://dx.doi.org/10.21236/ada218772.
Pełny tekst źródłaSchoelkopf, R. J., i S. M. Girvin. Student Support for Quantum Computing With Single Cooper-Pair Electronics. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2006. http://dx.doi.org/10.21236/ada442606.
Pełny tekst źródłaSchoelkopf, R. J., i S. M. Girvin. Student Support for Quantum Computing with Single Cooper-Pair Electronics. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2006. http://dx.doi.org/10.21236/ada465023.
Pełny tekst źródła