Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Quintuple product identity.

Artykuły w czasopismach na temat „Quintuple product identity”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 20 najlepszych artykułów w czasopismach naukowych na temat „Quintuple product identity”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

COOPER, SHAUN. "THE QUINTUPLE PRODUCT IDENTITY." International Journal of Number Theory 02, no. 01 (March 2006): 115–61. http://dx.doi.org/10.1142/s1793042106000401.

Pełny tekst źródła
Streszczenie:
The quintuple product identity was first discovered about 90 years ago. It has been published in many different forms, and at least 29 proofs have been given. We shall give a comprehensive survey of the work on the quintuple product identity, and a detailed analysis of the many proofs.
Style APA, Harvard, Vancouver, ISO itp.
2

Farkas, Hershel M., and Irwin Kra. "On the quintuple product identity." Proceedings of the American Mathematical Society 127, no. 3 (1999): 771–78. http://dx.doi.org/10.1090/s0002-9939-99-04791-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hirschhorn, M. D. "A generalisation of the quintuple product identity." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 44, no. 1 (February 1988): 42–45. http://dx.doi.org/10.1017/s1446788700031359.

Pełny tekst źródła
Streszczenie:
AbstractThe quintuple product identity has appeared many times in the literature. Indeed, no fewer than 12 proofs have been given. We establish a more general identity from which the quintuple product identity follows in two ways.
Style APA, Harvard, Vancouver, ISO itp.
4

Chan, Song Heng, Thi Phuong Nhi Ho, and Renrong Mao. "Truncated series from the quintuple product identity." Journal of Number Theory 169 (December 2016): 420–38. http://dx.doi.org/10.1016/j.jnt.2016.05.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Chen, William Y. C., Wenchang Chu, and Nancy S. S. Gu. "Finite form of the quintuple product identity." Journal of Combinatorial Theory, Series A 113, no. 1 (January 2006): 185–87. http://dx.doi.org/10.1016/j.jcta.2005.04.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

KIM, SUN. "A BIJECTIVE PROOF OF THE QUINTUPLE PRODUCT IDENTITY." International Journal of Number Theory 06, no. 02 (March 2010): 247–56. http://dx.doi.org/10.1142/s1793042110002909.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Chan, Hei-Chi. "Another simple proof of the quintuple product identity." International Journal of Mathematics and Mathematical Sciences 2005, no. 15 (2005): 2511–15. http://dx.doi.org/10.1155/ijmms.2005.2511.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Alladi, Krishnaswami. "The quintuple product identity and shifted partition functions." Journal of Computational and Applied Mathematics 68, no. 1-2 (April 1996): 3–13. http://dx.doi.org/10.1016/0377-0427(95)00251-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

CHEN, SIN-DA, and SEN-SHAN HUANG. "ON GENERAL SERIES-PRODUCT IDENTITIES." International Journal of Number Theory 05, no. 06 (September 2009): 1129–48. http://dx.doi.org/10.1142/s1793042109002596.

Pełny tekst źródła
Streszczenie:
We derive the general series-product identities from which we deduce several applications, including an identity of Gauss, the generalization of Winquist's identity by Carlitz and Subbarao, an identity for [Formula: see text], the quintuple product identity, and the octuple product identity.
Style APA, Harvard, Vancouver, ISO itp.
10

Zhu, Jun-Ming, and Zhi-Zheng Zhang. "A semi-finite form of the quintuple product identity." Journal of Combinatorial Theory, Series A 184 (November 2021): 105509. http://dx.doi.org/10.1016/j.jcta.2021.105509.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Chan, Heng Huat. "Triple product identity, Quintuple product identity and Ramanujan's differential equations for the classical Eisenstein series." Proceedings of the American Mathematical Society 135, no. 07 (July 1, 2007): 1987–93. http://dx.doi.org/10.1090/s0002-9939-07-08723-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Srivastava, Bhaskar. "A new form of the quintuple product identity and its application." Filomat 31, no. 7 (2017): 1869–73. http://dx.doi.org/10.2298/fil1707869s.

Pełny tekst źródła
Streszczenie:
We give a new form of the quintuple product identity. As a direct application of this new form a simple proof of known identities of Ramanujan and also new identities for other well known continued fractions are given. We also give and prove a general identity for (q3m; q3m)?.
Style APA, Harvard, Vancouver, ISO itp.
13

Bhargava, S., Chandrashekar Adiga та M. S. Mahadeva Naika. "QUINTUPLE PRODUCT IDENTITY AS A SPECIAL CASE OF RAMANUJAN'S 1ψ1 SUMMATION FORMULA". Asian-European Journal of Mathematics 04, № 01 (березень 2011): 31–34. http://dx.doi.org/10.1142/s1793557111000046.

Pełny tekst źródła
Streszczenie:
In this note we observe an interesting fact that the well-known quintuple product identity can be regarded as a special case of the celebrated 1ψ1 summation formula of Ramanujan which is known to unify the Jacobi triple product identity and the q -binomial theorem.
Style APA, Harvard, Vancouver, ISO itp.
14

Liu, Zhi-Guo. "An extension of the quintuple product identity and its applications." Pacific Journal of Mathematics 246, no. 2 (June 1, 2010): 345–90. http://dx.doi.org/10.2140/pjm.2010.246.345.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Bhargava, S., Chandrashekar Adiga, and M. S. Mahadeva Naika. "Ramanujan's remarkable summation formula as a $2$-papameter generalization of the quintuple product identity." Tamkang Journal of Mathematics 33, no. 3 (September 30, 2002): 285–88. http://dx.doi.org/10.5556/j.tkjm.33.2002.285-288.

Pełny tekst źródła
Streszczenie:
It is well known that `Ramanujan's remarkable summation formula' unifies and generalizes the $q$-binomial theorem and the triple product identity and has numerous applications. In this note we will demonstrate how, after a suitable transformation of the series side, it can be looked upon as a $2$-parameter generalization of the quintuple product identity also.
Style APA, Harvard, Vancouver, ISO itp.
16

Hammond, Paul, Richard Lewis, and Zhi-Guo Liu. "Hirschhorn's identities." Bulletin of the Australian Mathematical Society 60, no. 1 (August 1999): 73–80. http://dx.doi.org/10.1017/s0004972700033347.

Pełny tekst źródła
Streszczenie:
We prove a general identity between power series and use this identity to give proofs of a number of identities proposed by M.D. Hirschhorn. We also use the identity to give proofs of a well-known result of Jacobi, the quintuple-product identity and Winquist's identity.
Style APA, Harvard, Vancouver, ISO itp.
17

Clark, J. S., M. E. Lohr, L. R. Patrick, F. Najarro, H. Dong, and D. F. Figer. "An updated stellar census of the Quintuplet cluster." Astronomy & Astrophysics 618 (October 2018): A2. http://dx.doi.org/10.1051/0004-6361/201833041.

Pełny tekst źródła
Streszczenie:
Context. Found within the central molecular zone, the Quintuplet is one of the most massive young clusters in the Galaxy. As a consequence it offers the prospect of constraining stellar formation and evolution in extreme environments. However, current observations suggest that it comprises a remarkably diverse stellar population that is difficult to reconcile with an instantaneous formation event. Aims. To better understand the nature of the cluster our aim is to improve observational constraints on the constituent stars. Methods. In order to accomplish this goal we present Hubble Space Telesc
Style APA, Harvard, Vancouver, ISO itp.
18

Ma, X. "Two Finite Forms of Watson's Quintuple Product Identity and Matrix Inversion." Electronic Journal of Combinatorics 13, no. 1 (June 12, 2006). http://dx.doi.org/10.37236/1078.

Pełny tekst źródła
Streszczenie:
Recently, Chen-Chu-Gu and Guo-Zeng found independently that Watson's quintuple product identity follows surprisingly from two basic algebraic identities, called finite forms of Watson's quintuple product identity. The present paper shows that both identities are equivalent to two special cases of the $q$-Chu-Vandermonde formula by using the ($f,g$)-inversion.
Style APA, Harvard, Vancouver, ISO itp.
19

Chu, Wenchang, and Qinglun Yan. "Unification of the Quintuple and Septuple Product Identities." Electronic Journal of Combinatorics 14, no. 1 (March 28, 2007). http://dx.doi.org/10.37236/1008.

Pełny tekst źródła
Streszczenie:
By combining the functional equation method with Jacobi's triple product identity, we establish a general equation with five free parameters on the modified Jacobi theta function, which can be considered as the common generalization of the quintuple, sextuple and septuple product identities. Several known theta function formulae and new identities are consequently proved.
Style APA, Harvard, Vancouver, ISO itp.
20

Paule, Peter. "Short and Easy Computer Proofs of the Rogers-Ramanujan Identities and of Identities of Similar Type." Electronic Journal of Combinatorics 1, no. 1 (July 26, 1994). http://dx.doi.org/10.37236/1190.

Pełny tekst źródła
Streszczenie:
New short and easy computer proofs of finite versions of the Rogers-Ramanujan identities and of similar type are given. These include a very short proof of the first Rogers-Ramanujan identity that was missed by computers, and a new proof of the well-known quintuple product identity by creative telescoping.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!