Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Radar absorbing structures.

Artykuły w czasopismach na temat „Radar absorbing structures”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Radar absorbing structures”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Chambers, B. "Symmetrical radar absorbing structures." Electronics Letters 31, no. 5 (1995): 404–5. http://dx.doi.org/10.1049/el:19950280.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Aytaç, Ayhan, Hüseyin İpek, Kadir Aztekin, and Burak Çanakçı. "A review of the radar absorber material and structures." Scientific Journal of the Military University of Land Forces 198, no. 4 (2020): 931–46. http://dx.doi.org/10.5604/01.3001.0014.6064.

Pełny tekst źródła
Streszczenie:
The development of technologies that can rival the devices used by other countries in the defense industry, and more importantly, can disable their devices is becoming more critical. Radar absorber materials (RAM) make the detection of the material on the radar difficult because of absorbing a part of the electromagnetic wave sent by the radar. Considering that radar is one of the most important technologies used in the defense industry, the production of non-radar materials is vital for all countries in the world. Covering a gun platform with radar absorber material reduces the radar-cross-se
Style APA, Harvard, Vancouver, ISO itp.
3

Kim, Jin-Bong. "Broadband radar absorbing structures of carbon nanocomposites." Advanced Composite Materials 21, no. 4 (2012): 333–44. http://dx.doi.org/10.1080/09243046.2012.736350.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Zhang, Zheng Quan, Li Ge Wang, and En Ze Wang. "Microwave Absorbing Properties of Radar Absorbing Structure Composites Filling with Carbon Nanotubes." Advanced Materials Research 328-330 (September 2011): 1109–12. http://dx.doi.org/10.4028/www.scientific.net/amr.328-330.1109.

Pełny tekst źródła
Streszczenie:
Radar absorbing structures (RAS) can’t only load bearing but also absorb electromagnetic wave energy by inducing dielectric loss and minimizing reflected electromagnetic waves. Therefore, the development of the RAS haves become important to reduce RCS of the object. These composites possess excellent specific stiffness and strength. The electromagnetic wave properties of RAS can be effectively tailored by controlling the content of the lossy materials. Radar absorbing structures composed of glass fibers, carbon fibers and epoxy resin filling with carbon nanotubes (CNTs), was designed and prepa
Style APA, Harvard, Vancouver, ISO itp.
5

Eun, Se-Won, Won-Ho Choi, Hong-Kyu Jang, Jae-Hwan Shin, Jin-Bong Kim, and Chun-Gon Kim. "Effect of delamination on the electromagnetic wave absorbing performance of radar absorbing structures." Composites Science and Technology 116 (September 2015): 18–25. http://dx.doi.org/10.1016/j.compscitech.2015.04.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Rahmanzadeh, Mahdi, Hamid Rajabalipanah, and Ali Abdolali. "Analytical Investigation of Ultrabroadband Plasma–Graphene Radar Absorbing Structures." IEEE Transactions on Plasma Science 45, no. 6 (2017): 945–54. http://dx.doi.org/10.1109/tps.2017.2700724.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Wang, F. W., S. X. Gong, S. Zhang, X. Mu, and T. Hong. "RCS Reduction of Array Antennas with Radar Absorbing Structures." Journal of Electromagnetic Waves and Applications 25, no. 17-18 (2011): 2487–96. http://dx.doi.org/10.1163/156939311798806239.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Shen, Lihao, Yongqiang Pang, Leilei Yan, Yang Shen, Zhuo Xu, and Shaobo Qu. "Broadband radar absorbing sandwich structures with enhanced mechanical properties." Results in Physics 11 (December 2018): 253–58. http://dx.doi.org/10.1016/j.rinp.2018.09.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Choi, Ilbeom, Dongyoung Lee, and Dai Gil Lee. "Radar absorbing composite structures dispersed with nano-conductive particles." Composite Structures 122 (April 2015): 23–30. http://dx.doi.org/10.1016/j.compstruct.2014.11.040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Nam, Young-Woo, Jae-Hwan Shin, Jae-Hun Choi, et al. "Micro-mechanical failure prediction of radar-absorbing structure dispersed with multi-walled carbon nanotubes considering multi-scale modeling." Journal of Composite Materials 52, no. 12 (2017): 1649–60. http://dx.doi.org/10.1177/0021998317729003.

Pełny tekst źródła
Streszczenie:
Conventional radar-absorbing structure is typically manufactured with high weight percentage (wt.%) of carbonaceous nano-conductive particles in the polymer matrix to tailor its microwave absorbing performance. However, these manufacturing methods have some physical limitations with regard to fabrication, due to the high viscosity in the polymer matrix and, inhomogeneous in mechanical and electrical properties. No study has been conducted with micro-mechanical failure prediction of radar-absorbing structure dispersed with multi-walled carbon nanotubes. In order to address these limitations, ra
Style APA, Harvard, Vancouver, ISO itp.
11

Jang, Jae-Kyeong, Jong-Min Hyun, Dae-Sung Son, and Jung-Ryul Lee. "Nondestructive and electromagnetic evaluations of stealth structures damaged by lightning strike." Journal of Intelligent Material Systems and Structures 30, no. 17 (2019): 2567–74. http://dx.doi.org/10.1177/1045389x19862366.

Pełny tekst źródła
Streszczenie:
Stealth technology is very important for the survival of military aircraft. A stealth aircraft structure has both electromagnetic and mechanical functions. Lightning can cause failure on both the points. In this study, we claim that the stealth structure should be evaluated nondestructively and electromagnetically, and we propose a method for full-field evaluations of both the functions. First, a radar absorbing structure was designed and fabricated with stealth capability in the X-band. The radar absorbing structure consisted of a carbon nanotube layer (glass/epoxy dispersed with multiwalled
Style APA, Harvard, Vancouver, ISO itp.
12

Chen, Xin Yi, Jian Bo Wang, Jun Lu, Guan Cheng Sun, and Gui Bo Chen. "A Comparative Study on the Effects of FSS with Different Elements on the Characteristics of Radar Absorbing Materials." Advanced Materials Research 418-420 (December 2011): 42–45. http://dx.doi.org/10.4028/www.scientific.net/amr.418-420.42.

Pełny tekst źródła
Streszczenie:
The three common frequency selective surface (FSS) structure, i.e. ring, crosses and Y-aperture which have the same center frequencies are designed, then the three FSS structures are placed at absorbing materials to form complex absorbing structures which are simulated by means of spectral domain approach. Therefore, the effects of different FSS on the characteristics of absorbing materials are studied and the influence laws are given. This research offers reference to element selection for the application of common FSS to absorbing materials.
Style APA, Harvard, Vancouver, ISO itp.
13

Jang, Byung-Wook, Sun-Hwa Park, Won-Jun Lee, Young-Sik Joo, and Jung-Sun Park. "Optimization of Radar Absorbing Structures for Aircraft Wing Leading Edge." Journal of the Korean Society for Aeronautical & Space Sciences 41, no. 4 (2013): 268–74. http://dx.doi.org/10.5139/jksas.2013.41.4.268.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Kim, Sang-Young, and Sung-Soo Kim. "Design of Radar Absorbing Structures Utilizing Carbon-Based Polymer Composites." Polymers and Polymer Composites 26, no. 1 (2018): 105–10. http://dx.doi.org/10.1177/096739111802600113.

Pełny tekst źródła
Streszczenie:
Radar absorbing structure (RAS) is a composite laminate with a low reflection coefficient for the electromagnetic illumination in microwave frequency range, and thereby can be used in the stealth technology and electromagnetic compatibility (EMC). In this study, microwave absorbing properties of a two-layer composite laminate (carbon black impregnated rubber sheet attached to the carbon fiber–epoxy composite panel) has been investigated. Complex permittivity and permeability of the composite materials were measured in C- and X-band frequencies (4–12 GHz) by reflection/transmission technique us
Style APA, Harvard, Vancouver, ISO itp.
15

Narayan, Shiv, J. Sreeja, V. V. Surya, B. Sangeetha, and Raveendranath U. Nair. "Radar Absorbing Structures Using Frequency Selective Surfaces: Trends and Perspectives." Journal of Electronic Materials 49, no. 3 (2020): 1728–41. http://dx.doi.org/10.1007/s11664-019-07911-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Hunjra, MAM, MA Fakhar, K. Naveed, and T. Subhani. "Polyurethane foam-based radar absorbing sandwich structures to evade detection." Journal of Sandwich Structures & Materials 19, no. 6 (2016): 647–58. http://dx.doi.org/10.1177/1099636216635856.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

de Castro Folgueras, Luiza, Mauro Angelo Alves, and Mirabel C. Rezende. "Electromagnetic Evaluation of Multifunctional Composites for Use in Radar Absorbing Structures." Advanced Materials Research 1135 (January 2016): 104–11. http://dx.doi.org/10.4028/www.scientific.net/amr.1135.104.

Pełny tekst źródła
Streszczenie:
The knowledge of how to process composite materials and combine them with radiation absorbing centers, using different components, additives and polymer matrices with suitable electromagnetic properties (dielectric constant and tangent loss), allows the production of multifunctional composites that can function as conductors or microwave absorbing materials. Thus, the purpose of this study was to process and evaluate the electromagnetic properties of multilayered multifunctional composites made with layers of glass fiber cloths or nonwoven glass fiber veils pre-impregnated with formulations ba
Style APA, Harvard, Vancouver, ISO itp.
18

Jang, Byungwook, Myungjun Kim, Jungsun Park, and Sooyong Lee. "Design Optimization of Composite Radar Absorbing Structures to Improve Stealth Performance." International Journal of Aeronautical and Space Sciences 17, no. 1 (2016): 20–28. http://dx.doi.org/10.5139/ijass.2016.17.1.20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Wang, Hongyu, and Dongmei Zhu. "Double layered radar absorbing structures of Silicon Carbide fibers/polyimide composites." Synthetic Metals 246 (December 2018): 213–19. http://dx.doi.org/10.1016/j.synthmet.2018.10.020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Go, Jeong-In, Won-Jun Lee, Sang-Yong Kim, Sang-Min Baek, and Won-Ho Choi. "Electromagnetic damage tolerance for radar absorbing composite structures with impact damage." Composites Science and Technology 199 (October 2020): 108366. http://dx.doi.org/10.1016/j.compscitech.2020.108366.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Zhao, Ziyu, Pibo Ma, Haitao Lin, and Fenglin Xia. "Radar-absorbing Performances of Camouflage Fabrics with 3D Warp-knitted Structures." Fibers and Polymers 21, no. 3 (2020): 532–37. http://dx.doi.org/10.1007/s12221-020-9775-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Lee, Won-Jun, and Chun-Gon Kim. "Electromagnetic Wave Absorbing Composites with a Square Patterned Conducting Polymer Layer for Wideband Characteristics." Shock and Vibration 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/318380.

Pełny tekst źródła
Streszczenie:
The applications of electromagnetic- (EM-) wave-absorbers are being expanded for commercial and military purposes. For military applications in particular, EM-wave-absorbers (EMWAs) could minimize Radar Cross Section (RCS) of structures, which could reduce the possibility of detection by radar. In this study, EMWA composite structure containing a square periodic patterned layer is presented. It was found that control of the pattern geometry and surface resistance induced EMWA characteristics which can create multiresonance for wideband absorption in composite structures.
Style APA, Harvard, Vancouver, ISO itp.
23

Choi, Won-Ho, Woon-Hyung Song, and Won-Jun Lee. "Broadband Radar Absorbing Structures with a Practical Approach from Design to Fabrication." Journal of Electromagnetic Engineering and Science 20, no. 4 (2020): 254–61. http://dx.doi.org/10.26866/jees.2020.20.4.254.

Pełny tekst źródła
Streszczenie:
In this study, a novel broadband radar absorbing volume structure (RAVS) is proposed and demonstrated with a practical point of view from design to fabrication. The proposed RAVS uses a design concept of repeatedly stacked carbon nanotube (CNT) composites and foam cores of the same thickness to improve the applicability to real structures while maintaining absorption performance. The repeatedly stacked CNT composites, which act as electrically lossy materials, result in the multiple scattering of incident electromagnetic waves trapped inside the structure. The trapped incident waves then lose
Style APA, Harvard, Vancouver, ISO itp.
24

Kim, Sang-Yong, Won-Jun Lee, Sang-Min Baek, and Chun-Gon Kim. "Control of dielectric properties of micropattern printed fabric for radar absorbing structures." Composite Structures 274 (October 2021): 114361. http://dx.doi.org/10.1016/j.compstruct.2021.114361.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Wang, Zhijin, Chen Zhou, Valentin Khaliulin, and Alexey Shabalov. "An experimental study on the radar absorbing characteristics of folded core structures." Composite Structures 194 (June 2018): 199–207. http://dx.doi.org/10.1016/j.compstruct.2018.03.106.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Siva Nagasree, P., K. Ramji, Ch Subramanyam, K. Krushnamurthy, and T. Haritha. "Synthesis of Ni0.5Zn0.5Fe2O4-reinforced E-glass/epoxy nanocomposites for radar-absorbing structures." Plastics, Rubber and Composites 49, no. 10 (2020): 434–42. http://dx.doi.org/10.1080/14658011.2020.1793080.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Lee, Dongyoung, Ilbeom Choi, and Dai Gil Lee. "Development of a damage tolerant structure for nano-composite radar absorbing structures." Composite Structures 119 (January 2015): 107–14. http://dx.doi.org/10.1016/j.compstruct.2014.08.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Wang, Yi, Hai Feng Cheng, Jun Wang, and Yong Jiang Zhou. "Infrared Emissivity of Capacitive Frequency-Selective Surfaces and its Application in Radar and IR Compatible Stealth Sandwich Structures." Advanced Materials Research 382 (November 2011): 65–69. http://dx.doi.org/10.4028/www.scientific.net/amr.382.65.

Pełny tekst źródła
Streszczenie:
Infrared emissivity of capacitive frequency-selective surfaces is affected by many factors, such as metal area, emissivity of medium part, surface roughness, metal oxidation, and surface cleanness, etc. In this paper, the influence of metal area and emissivity of medium part on the emissivity of CFSSs were depicted in detail. Furthermore, a kind of radar and IR compatible stealth sandwich structures, radar absorbing properties of which were calculated by the finite-difference time-domain (FDTD) method, were designed and prepared. We conclude that emissivity of CFSSs will be below 0.3 while met
Style APA, Harvard, Vancouver, ISO itp.
29

Park, Ki-Yeon, Jae-Hung Han, Jin-Bong Kim, and Sang-Kwan Lee. "Two-layered electromagnetic wave-absorbing E-glass/epoxy plain weave composites containing carbon nanofibers and NiFe particles." Journal of Composite Materials 45, no. 26 (2011): 2773–81. http://dx.doi.org/10.1177/0021998311410467.

Pełny tekst źródła
Streszczenie:
Two-layered radar-absorbing structures (RASs) were investigated for the broadband absorbing characteristics for the X-band (8.2–12.4 GHz) and Ku-band (12.0–18.0 GHz). E-glass/epoxy plain weave composites containing carbon nanofibers (CNFs) and submicron NiFe particles were fabricated and their complex permittivities and permeabilities measured in the range 2–18 GHz. The surface and absorbing layers of two-layered RASs consisted of the low and high lossy materials, respectively. Six kinds of two-layered RASs were designed through the parametric studies. The three kinds of specimens with wide ab
Style APA, Harvard, Vancouver, ISO itp.
30

Sun, Wei-Feng, and Peng-Bo Sun. "Electrical Insulation and Radar-Wave Absorption Performances of Nanoferrite/Liquid-Silicone-Rubber Composites." International Journal of Molecular Sciences 23, no. 18 (2022): 10424. http://dx.doi.org/10.3390/ijms231810424.

Pełny tekst źródła
Streszczenie:
Novel radar-wave absorption nanocomposites are developed by filling the nanoscaled ferrites of strontium ferroxide (SrFe12O19) and carbonyl iron (CIP) individually into the highly flexible liquid silicone rubber (LSR) considered as dielectric matrix. Nanofiller dispersivities in SrFe12O19/LSR and CIP/LSR nanocomposites are characterized by scanning electronic microscopy, and the mechanical properties, electric conductivity, and DC dielectric-breakdown strength are tested to evaluate electrical insulation performances. Radar-wave absorption performances of SrFe12O19/LSR and CIP/LSR nanocomposit
Style APA, Harvard, Vancouver, ISO itp.
31

Jang, Byung-Wook, and Jung-Sun Park. "Design of Single Layer Radar Absorbing Structures(RAS) for Minimizing Radar Cross Section(RCS) Using Impedance Matching." Journal of the Korean Society for Aeronautical & Space Sciences 43, no. 2 (2015): 118–24. http://dx.doi.org/10.5139/jksas.2015.43.2.118.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Joy, Vineetha, Vishal Padwal, Raveendranath U. Nair, and Hema Singh. "Optimal Design of Multilayered Radar Absorbing Structures (RAS) using Swarm Intelligence based Algorithm." Defence Science Journal 72, no. 2 (2022): 236–42. http://dx.doi.org/10.14429/dsj.72.17417.

Pełny tekst źródła
Streszczenie:

 
 
 The steady progress in the fields of material science and processing technologies has made multi-layered radar absorbing structures (RAS) an attractive option w.r.t. stealth technologies. They possess the ability to reduce radar cross-section with minimum thickness and is therefore most preferred in airborne applications. As far as their electromagnetic performance is concerned, the sequence of material layers and thickness profile plays a pivotal role. Optimization of these two factors becomes complex in case of availability of large number of potential materials. Commonl
Style APA, Harvard, Vancouver, ISO itp.
33

Indrusiak, Tamara, Iaci M. Pereira, Ketly Pontes, et al. "Hybrid carbonaceous materials for radar absorbing poly(vinylidene fluoride) composites with multilayered structures." SPE Polymers 2, no. 1 (2021): 62–73. http://dx.doi.org/10.1002/pls2.10030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Liu, Hsien-Kuang, Ruey-Bin Yang, and Ke-Dun Yen. "Radar-Absorbing Structures with Reduced Graphene Oxide Papers Fabricated Under Various Processing Parameters." Journal of Electronic Materials 51, no. 3 (2022): 985–94. http://dx.doi.org/10.1007/s11664-021-09347-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Xu, Haibing, Shaowei Bie, Yongshun Xu, Wei Yuan, Qian Chen, and Jianjun Jiang. "Broad bandwidth of thin composite radar absorbing structures embedded with frequency selective surfaces." Composites Part A: Applied Science and Manufacturing 80 (January 2016): 111–17. http://dx.doi.org/10.1016/j.compositesa.2015.10.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Kapelewski, J. "On Current and Prospective Use of Binary Thin Multilayers in Radar Absorbing Structures." Acta Physica Polonica A 124, no. 3 (2013): 451–55. http://dx.doi.org/10.12693/aphyspola.124.451.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Delfini, Andrea, Marta Albano, Antonio Vricella, et al. "Advanced Radar Absorbing Ceramic-Based Materials for Multifunctional Applications in Space Environment." Materials 11, no. 9 (2018): 1730. http://dx.doi.org/10.3390/ma11091730.

Pełny tekst źródła
Streszczenie:
In this review, some results of the experimental activity carried out by the authors on advanced composite materials for space applications are reported. Composites are widely employed in the aerospace industry thanks to their lightweight and advanced thermo-mechanical and electrical properties. A critical issue to tackle using engineered materials for space activities is providing two or more specific functionalities by means of single items/components. In this scenario, carbon-based composites are believed to be ideal candidates for the forthcoming development of aerospace research and space
Style APA, Harvard, Vancouver, ISO itp.
38

Ivaturi, Srikanth, P. S. N. S. R. Srikar, K. Anusha, et al. "Fabrication and Evaluation of Low Density Glass-Epoxy Composites for Microwave Absorption Applications." Defence Science Journal 67, no. 6 (2017): 682. http://dx.doi.org/10.14429/dsj.67.11331.

Pełny tekst źródła
Streszczenie:
<p class="p1">In the present work, fabrication and evaluation of low density glass – epoxy (LDGE) composites suitable for absorbing minimum 80 per cent of incident microwave energy in 8 GHz to 12 GHz (X-band) is reported. LDGE composites having different densities were fabricated using a novel method of partially replacing conventional S-glass fabric with low density glass (LDG) layers as the reinforcement materials. Flexural strength, inter laminar shear strength and impact strength of the prepared LDGE composites were evaluated and compared with conventional High density glass-epoxy (H
Style APA, Harvard, Vancouver, ISO itp.
39

Zhang, Ying, Qing Shen, Yixing Huang, Qin Lu, and Jijun Yu. "Broadband Electromagnetic Absorption Effect of Topological Structure Using Carbon Nanotube Based Hybrid Material." Materials 15, no. 14 (2022): 4983. http://dx.doi.org/10.3390/ma15144983.

Pełny tekst źródła
Streszczenie:
The development of microwave absorbing technology raises the demands for all-band absorption. The topological structures expand the frequency range of electromagnetic wave absorption and eliminate the differences caused by scattering in different incident directions. The multi-wall carbon nanotube and carbonyl iron particles were mixed with polylactic polymer to fabricate filaments for fused deposition. The distribution characteristics of the structures using carbonyl iron/carbon nanotube hybrid material for the key absorption frequency band are obtained. The reflectivity of the honeycomb stru
Style APA, Harvard, Vancouver, ISO itp.
40

Casper, David A., and K. ‐J Samuel Kung. "Simulation of ground‐penetrating radar waves in a 2-D soil model." GEOPHYSICS 61, no. 4 (1996): 1034–49. http://dx.doi.org/10.1190/1.1444025.

Pełny tekst źródła
Streszczenie:
We have developed a pseudospectral forward modeling algorithm for ground‐penetrating radar (GPR) based on an explicit solution of the 2-D lossy electromagnetic wave equation. Complex soil structures can be accommodated with heterogeneous spatial distributions of both wave velocity and electrical conductivity. This algorithm uses a Gaussian line source with uniform directivity, and there are conductive buffer regions surrounding the soil model to approximate absorbing boundary conditions. Three soil models are used to illustrate different aspects of radar wave propagation. The first model is lo
Style APA, Harvard, Vancouver, ISO itp.
41

Din, Salah ud, Jong-Min Hyun, Dae-Sung Son, and Jung-Ryul Lee. "Robotic scanning free-space measurement system for electromagnetic performance evaluation of curved radar absorbing structures." International Journal of Advanced Robotic Systems 19, no. 4 (2022): 172988062211145. http://dx.doi.org/10.1177/17298806221114554.

Pełny tekst źródła
Streszczenie:
Radar absorbing structures are manufactured for stealth missions and total quality inspection applies to evaluate their performances before assembly to stealth weapon systems. This study adopted a six-axis robot arm to move a target specimen in a scanning free-space measurement system for electromagnetic performance evaluation. The six-axis robot arm completely enables the system to maintain the specimen at the focal point of the antenna and solves the issue of curvature effect on the return loss results of the curved specimens, faced in the two- and three-axis scanning free-space measurement
Style APA, Harvard, Vancouver, ISO itp.
42

Kim, Chingu, and Minkook Kim. "Intrinsically conducting polymer (ICP) coated aramid fiber reinforced composites for broadband radar absorbing structures (RAS)." Composites Science and Technology 211 (July 2021): 108827. http://dx.doi.org/10.1016/j.compscitech.2021.108827.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Jang, Min-Su, Woo-Hyeok Jang, Do-Hyeon Jin, Won-Ho Choi, and Chun-Gon Kim. "Circuit-analog radar absorbing structures using a periodic pattern etched on Ni-coated glass fabric." Composite Structures 281 (February 2022): 115099. http://dx.doi.org/10.1016/j.compstruct.2021.115099.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Jang, Min-Su, Jae-Hun Choi, Woo-Hyeok Jang, Young-Woo Nam, and Chun-Gon Kim. "Influence of lightning strikes on the structural performance of Ni-glass/epoxy radar-absorbing structures." Composite Structures 245 (August 2020): 112301. http://dx.doi.org/10.1016/j.compstruct.2020.112301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Li, Weiwei, Mingji Chen, Zhihui Zeng, Hao Jin, Yongmao Pei, and Zhong Zhang. "Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization." Composites Science and Technology 145 (June 2017): 10–14. http://dx.doi.org/10.1016/j.compscitech.2017.03.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Mazinov A. S, Fitaev I. Sh, and Boldyrev N. A. "Attenuation of the normal component of the reflected electromagnetic wave by combined radio-absorbing coatings." Technical Physics Letters 48, no. 10 (2022): 24. http://dx.doi.org/10.21883/tpl.2022.10.54792.19324.

Pełny tekst źródła
Streszczenie:
A combined radar-absorbent coating on a solid metal surface was studied. The structure of such coatings was developed, an experimental investigation of their frequency dependences was conducted, and scattering diagrams of both the combined surface and its constituents were obtained. The research findings of attenuating abilities for the proposed multi-layer structures are demonstrated. Keywords: Diagram of scattering, reflection of electromagnetic waves, metamaterials, ultrathin conductive films, combined coatings.
Style APA, Harvard, Vancouver, ISO itp.
47

Kim, Kook-Hyun, Dae-Seung Cho, and Jin-Hyeong Kim. "Broad-band Multi-layered Radar Absorbing Material Design for Radar Cross Section Reduction of Complex Targets Consisting of Multiple Reflection Structures." Journal of the Society of Naval Architects of Korea 44, no. 4 (2007): 445–50. http://dx.doi.org/10.3744/snak.2007.44.4.445.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Baek, Sang Min, and Won Jun Lee. "Design method for radar absorbing structures using reliability-based design optimization of the composite material properties." Composite Structures 262 (April 2021): 113559. http://dx.doi.org/10.1016/j.compstruct.2021.113559.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Jang, Hong-Kyu, Jae-Hwan Shin, Chun-Gon Kim, Sang-Hun Shin, and Jin-Bong Kim. "Semi-cylindrical Radar Absorbing Structures using Fiber-reinforced Composites and Conducting Polymers in the X-band." Advanced Composite Materials 20, no. 3 (2011): 215–29. http://dx.doi.org/10.1163/092430410x539299.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Oh, Jung-Hoon, Kyung-Sub Oh, Chun-Gon Kim, and Chang-Sun Hong. "Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges." Composites Part B: Engineering 35, no. 1 (2004): 49–56. http://dx.doi.org/10.1016/j.compositesb.2003.08.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!