Gotowa bibliografia na temat „Radiative heat transfer and ethylene”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Radiative heat transfer and ethylene”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Radiative heat transfer and ethylene"
Zaimuddin, Izzatun Nazurah, and Fazlina Aman. "Nanoparticle Shapes (Sphere, Cylinder and Laminar) Impact with Dusty Carbon Nanotubes-Fluid in Magnetohydrodynamics Radiative Flow." Journal of Nanofluids 11, no. 3 (2022): 434–52. http://dx.doi.org/10.1166/jon.2022.1850.
Pełny tekst źródłaUllah, Ikram, Tasawar Hayat, Arsalan Aziz, and Ahmed Alsaedi. "Significance of Entropy Generation and the Coriolis Force on the Three-Dimensional Non-Darcy Flow of Ethylene-Glycol Conveying Carbon Nanotubes (SWCNTs and MWCNTs)." Journal of Non-Equilibrium Thermodynamics 47, no. 1 (2021): 61–75. http://dx.doi.org/10.1515/jnet-2021-0012.
Pełny tekst źródłaLavanya, Bommana, Jorige Girish Kumar, Macherla Jayachandra Babu, Chakravarthula Sivakrishnam Raju, Nehad Ali Shah, and Prem Junsawang. "Irreversibility Analysis in the Ethylene Glycol Based Hybrid Nanofluid Flow amongst Expanding/Contracting Walls When Quadratic Thermal Radiation and Arrhenius Activation Energy Are Significant." Mathematics 10, no. 16 (2022): 2984. http://dx.doi.org/10.3390/math10162984.
Pełny tekst źródłaSaji, C. B., C. Balaji, and T. Sundararajan. "Investigation of soot transport and radiative heat transfer in an ethylene jet diffusion flame." International Journal of Heat and Mass Transfer 51, no. 17-18 (2008): 4287–99. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.02.010.
Pełny tekst źródłaShahsavar Goldanlou, Aysan, Mohammad Badri, Behzad Heidarshenas, Ahmed Kadhim Hussein, Sara Rostami, and Mostafa Safdari Shadloo. "Numerical Investigation on Forced Hybrid Nanofluid Flow and Heat Transfer Inside a Three-Dimensional Annulus Equipped with Hot and Cold Rods: Using Symmetry Simulation." Symmetry 12, no. 11 (2020): 1873. http://dx.doi.org/10.3390/sym12111873.
Pełny tekst źródłaAbdullah, Dawar, Sha Zahir, Islam Saeed, Idress Muhammad, and Khan Waris. "Magnetohydrodynamic CNTs Casson Nanofluid and Radiative heat transfer in a Rotating Channels." International Journal of Physics Research and Applications 1, no. 1 (2018): 017–32. https://doi.org/10.29328/journal.ijpra.1001002.
Pełny tekst źródłaAgrawal, Rashmi, and Pradeep Kaswan. "Heat Transfer and Transport Aspects of a ZnO/Ethylene Glycol-Water Nanofluid Through a Nonlinearly Stretching Sheet." Journal of Nanofluids 12, no. 4 (2023): 1030–38. http://dx.doi.org/10.1166/jon.2023.1987.
Pełny tekst źródłaTaymarov, Mikhail, and Elena Saltanaeva. "Electric Spark Alloying of Radiant Coils for Pyrolysis Furnaces." MATEC Web of Conferences 346 (2021): 02024. http://dx.doi.org/10.1051/matecconf/202134602024.
Pełny tekst źródłaRashid, Umair, Azhar Iqbal, and Abdullah Alsharif. "Numerical Study of (Au-Cu)/Water and (Au-Cu)/Ethylene Glycol Hybrid Nanofluids Flow and Heat Transfer over a Stretching Porous Plate." Energies 14, no. 24 (2021): 8341. http://dx.doi.org/10.3390/en14248341.
Pełny tekst źródłaSharma, Ram Prakash, S. R. Mishra, Seema Tinker, and B. K. Kulshrestha. "Radiative Heat Transfer of Hybrid Nanofluid Flow Over an Expanding Surface with the Interaction of Joule Effect." Journal of Nanofluids 11, no. 5 (2022): 745–53. http://dx.doi.org/10.1166/jon.2022.1872.
Pełny tekst źródłaRozprawy doktorskie na temat "Radiative heat transfer and ethylene"
Colomer, Rey Guillem. "Numerical methods for radiative heat transfer." Doctoral thesis, Universitat Politècnica de Catalunya, 2006. http://hdl.handle.net/10803/6691.
Pełny tekst źródłaRamamoorthy, Babila. "Numerical simulation of radiative heat transfer." Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2009r/ramamoorthy.pdf.
Pełny tekst źródłaQuintero, de la Garza Rodrigo Javier 1974. "Spheroidization of iron powders by radiative heat transfer." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85328.
Pełny tekst źródłaDai, Jin. "Near-Field Radiative Heat Transfer between Plasmonic Nanostructures." Doctoral thesis, KTH, Optik och Fotonik, OFO, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-195653.
Pełny tekst źródłaLuo, Gang. "A cloud fraction and radiative transfer model." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/25753.
Pełny tekst źródłaEnd, Thomas [Verfasser]. "Optimal Control of Nonlocal Radiative Heat Transfer / Thomas End." München : Verlag Dr. Hut, 2012. http://d-nb.info/1021072893/34.
Pełny tekst źródłaBakeer, Muna. "Radiative heat transfer in gallium arsenide lec crystal pullers." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29916.
Pełny tekst źródłaLuan, Wenqi. "Radiative and total heat transfer in circulating fluidized beds." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq25101.pdf.
Pełny tekst źródłaTorpey, Mark R. "A study of radiative heat transfer through foam insulation." Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/14661.
Pełny tekst źródłaMbiock, Aristide. "Radiative heat transfer in furnaces : elliptic boundary value problem." Rouen, 1997. http://www.theses.fr/1997ROUEA002.
Pełny tekst źródłaKsiążki na temat "Radiative heat transfer and ethylene"
Yadav, Rahul, C. Balaji, and S. P. Venkateshan. Radiative Heat Transfer in Participating Media. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-99045-9.
Pełny tekst źródłaModest, Michael F., and Daniel C. Haworth. Radiative Heat Transfer in Turbulent Combustion Systems. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27291-7.
Pełny tekst źródłaF, Nogotov E., and Trofimov V. P, eds. Radiative heat transfer in two-phase media. CRC Press, 1993.
Znajdź pełny tekst źródłaReardon, John E. Rocket plume base heat transfer methodology. American Institute of Aeronautics and Astronautics, 1993.
Znajdź pełny tekst źródłaGuido, Kanschat, ed. Numerical methods in multidimensional radiative transfer. Springer, 2009.
Znajdź pełny tekst źródłaGuido, Kanschat, ed. Numerical methods in multidimensional radiative transfer. Springer, 2009.
Znajdź pełny tekst źródła1927-, Siegel Robert, and Mengüç M. Pinar, eds. Thermal radiation heat transfer. 5th ed. CRC Press, 2011.
Znajdź pełny tekst źródłaStröhle, Jochen. Spectral modelling of radiative heat transfer in industrial furnaces. Shaker, 2004.
Znajdź pełny tekst źródłaIvanovich, Soloukhin Rem, ed. Handbook of radiative heat transfer in high-temperature gases. Hemisphere Pub. Corp., 1987.
Znajdź pełny tekst źródłaCzęści książek na temat "Radiative heat transfer and ethylene"
Smoot, L. Douglas, and Philip J. Smith. "Radiative Heat Transfer." In Coal Combustion and Gasification. Springer US, 1985. http://dx.doi.org/10.1007/978-1-4757-9721-3_14.
Pełny tekst źródłaVolokitin, Aleksandr I., and Bo N. J. Persson. "Radiative Heat Transfer." In Electromagnetic Fluctuations at the Nanoscale. Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53474-8_6.
Pełny tekst źródłaAkimoto, Hajime, Yoshinari Anoda, Kazuyuki Takase, Hiroyuki Yoshida, and Hidesada Tamai. "Radiative Heat Transfer." In An Advanced Course in Nuclear Engineering. Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55603-9_18.
Pełny tekst źródłaShang, Joseph J. S. "Radiative Heat Transfer." In Classic and High-Enthalpy Hypersonic Flows. CRC Press, 2023. http://dx.doi.org/10.1201/9781003212362-13.
Pełny tekst źródłaSteane, Andrew M. "Radiative heat transfer." In Thermodynamics. Oxford University Press, 2016. http://dx.doi.org/10.1093/acprof:oso/9780198788560.003.0020.
Pełny tekst źródła"Radiative Heat Transfer." In Heat Transfer in Single and Multiphase Systems. CRC Press, 2002. http://dx.doi.org/10.1201/9781420041064-8.
Pełny tekst źródła"Radiative Heat Transfer." In Mechanical Engineering Series. CRC Press, 2002. http://dx.doi.org/10.1201/9781420041064.ch4.
Pełny tekst źródłaModest, Michael F. "Nanoscale Radiative Transfer." In Radiative Heat Transfer. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-386944-9.50024-8.
Pełny tekst źródłaModest, Michael F., and Sandip Mazumder. "Nanoscale Radiative Transfer." In Radiative Heat Transfer. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-818143-0.00032-8.
Pełny tekst źródła"Front Matter." In Radiative Heat Transfer. Elsevier, 2003. http://dx.doi.org/10.1016/b978-0-12-503163-9.50033-3.
Pełny tekst źródłaStreszczenia konferencji na temat "Radiative heat transfer and ethylene"
Mehta, Ranjan S., Michael F. Modest, and Daniel C. Haworth. "Radiation Characteristics and Turbulence-Radiation Interactions in Sooting Turbulent Jet Flames." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88078.
Pełny tekst źródłaTorres Monclard, Kevin, Olivier Gicquel, and Ronan Vicquelin. "Impact of Soot Radiative Properties, Pressure and Soot Volume Fraction on Radiative Heat Transfer in Turbulent Sooty Flames." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15559.
Pełny tekst źródłaAbas, Z. Abal, S. Salleh, A. S. Hassan Basari, and Nuzulha Khilwani Ibrahim. "A CONCEPTUAL MODEL OF INTEGRATING SENSOR NETWORK AND RADIATIVE HEAT TRANSFER EQUATION FOR ETHYLENE FURNACE." In ICMS INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE. American Institute of Physics, 2010. http://dx.doi.org/10.1063/1.3525146.
Pełny tekst źródłaZheng, Yuan, and Jay P. Gore. "Deconvolution of Temperature and Soot Volume Fraction in a Turbulent Ethylene Flame by Inverse Spectral Radiation Analysis." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56890.
Pełny tekst źródłaBiswas, Kaushik, Yuan Zheng, and Jay Gore. "Spectral Radiation Properties of a Turbulent Ethylene Pool Fire." In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56310.
Pełny tekst źródłaLiu, Fengshan, Francesca Migliorini, Francesco Cignoli, Silvana De Iuliis, and Giorgio Zizak. "Effects of Hydrogen and Helium Addition to Fuel on Soot Formation in Axisymmetric Coflow Laminar Methane-Air Diffusion Flame." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32466.
Pełny tekst źródłaFROLOV, S. M. "SPHERICAL DIFFUSION FLAME IN MICROGRAVITY CONDITIONS: FIRST RESULTS OF JOINT RUSSIAN-AMERICAN SPACE EXPERIMENT FLAME DESIGN - ADAMANT." In 9th International Symposium on Nonequilibrium Processes, Plasma, Combustion, and Atmospheric Phenomena. TORUS PRESS, 2020. http://dx.doi.org/10.30826/nepcap9b-13.
Pełny tekst źródłaSacadura, Jean-Francois. "RADIATIVE HEAT TRANSFER IN FIRE SAFETY SCIENCE." In RADIATIVE TRANSFER - IV. Fourth International Symposium on Radiative Transfer. Begellhouse, 2004. http://dx.doi.org/10.1615/ichmt.2004.rad-4.10.
Pełny tekst źródłaKurosaki, Yasuo. "RADIATIVE HEAT TRANSFER IN PLASTIC WELDING PROCESSES." In RADIATIVE TRANSFER - IV. Fourth International Symposium on Radiative Transfer. Begellhouse, 2004. http://dx.doi.org/10.1615/ichmt.2004.rad-4.20.
Pełny tekst źródłaArpaci, V. S., and A. Selamet. "RADIATIVE ENTROPY PRODUCTION." In International Heat Transfer Conference 8. Begellhouse, 1986. http://dx.doi.org/10.1615/ihtc8.4130.
Pełny tekst źródłaRaporty organizacyjne na temat "Radiative heat transfer and ethylene"
Hayes, Steven Lowe. Radiative heat transfer in porous uranium dioxide. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10189532.
Pełny tekst źródłaTencer, John, Kevin Thomas Carlberg, Marvin E. Larsen, and Roy E. Hogan. Advanced Computational Methods for Thermal Radiative Heat Transfer. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1330205.
Pełny tekst źródłaSchock, Alfred, and M. J. Abbate. Comparison of Methods for Calculating Radiative Heat Transfer. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1033384.
Pełny tekst źródłaForney, Glenn P. Computing radiative heat transfer occurring in a zone fire model. National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.4709.
Pełny tekst źródłaAhluwalia, R. K., and K. H. Im. Spectral radiative heat transfer in coal furnaces using a hybrid technique. Office of Scientific and Technical Information (OSTI), 1994. http://dx.doi.org/10.2172/10133030.
Pełny tekst źródłaAhluwalia, R., and K. Im. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/6810345.
Pełny tekst źródłaAhluwalia, R. K., and K. H. Im. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10125191.
Pełny tekst źródłaKirsch, Jared, and Joshua Hubbard. Complementary Study of Radiative Heat Transfer and Flow Physics from Moderate-scale Hydrocarbon Pool Fire Simulations. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1832312.
Pełny tekst źródłaSkimmons, J. Determing the Radiative Heat Transfer out of the Fireball of an Atmospheric Nuclear Detonation using Experimental Data. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1603242.
Pełny tekst źródłaStoellinger, Michael. Final Scientific/Technical Report for "Implementing General Framework in MFIX for Radiative Heat Transfer in Gas-Solid Reacting Flows". Office of Scientific and Technical Information (OSTI), 2022. http://dx.doi.org/10.2172/1839386.
Pełny tekst źródła