Gotowa bibliografia na temat „Radiomics analysis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Radiomics analysis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Radiomics analysis"
Hu, Shuyi, Xiajie Lyu, Weifeng Li, et al. "Radiomics Analysis on Noncontrast CT for Distinguishing Hepatic Hemangioma (HH) and Hepatocellular Carcinoma (HCC)." Contrast Media & Molecular Imaging 2022 (June 25, 2022): 1–8. http://dx.doi.org/10.1155/2022/7693631.
Pełny tekst źródłaYin, Yunchao, Derya Yakar, Rudi A. J. O. Dierckx, Kim B. Mouridsen, Thomas C. Kwee, and Robbert J. de Haas. "Combining Hepatic and Splenic CT Radiomic Features Improves Radiomic Analysis Performance for Liver Fibrosis Staging." Diagnostics 12, no. 2 (2022): 550. http://dx.doi.org/10.3390/diagnostics12020550.
Pełny tekst źródłaXia, Zhen, Xiao-Chen Huang, Xin-Yu Xu, et al. "Ultrasound-Based Deep Learning Radiomics Models for Predicting Primary and Secondary Salivary Gland Malignancies: A Multicenter Retrospective Study." Bioengineering 12, no. 4 (2025): 391. https://doi.org/10.3390/bioengineering12040391.
Pełny tekst źródłaGelardi, Fabrizia, Lara Cavinato, Rita De Sanctis, et al. "The Predictive Role of Radiomics in Breast Cancer Patients Imaged by [18F]FDG PET: Preliminary Results from a Prospective Cohort." Diagnostics 14, no. 20 (2024): 2312. http://dx.doi.org/10.3390/diagnostics14202312.
Pełny tekst źródłaChilaca-Rosas, Maria-Fatima, Melissa Garcia-Lezama, Sergio Moreno-Jimenez, and Ernesto Roldan-Valadez. "Diagnostic Performance of Selected MRI-Derived Radiomics Able to Discriminate Progression-Free and Overall Survival in Patients with Midline Glioma and the H3F3AK27M Mutation." Diagnostics 13, no. 5 (2023): 849. http://dx.doi.org/10.3390/diagnostics13050849.
Pełny tekst źródłaHu, Yumin, Qiaoyou Weng, Haihong Xia, et al. "A radiomic nomogram based on arterial phase of CT for differential diagnosis of ovarian cancer." Abdominal Radiology 46, no. 6 (2021): 2384–92. http://dx.doi.org/10.1007/s00261-021-03120-w.
Pełny tekst źródłaCinarer, Gokalp, and Bulent Gursel Emiroglu. "Statistical analysis of radiomic features in differentiation of glioma grades." New Trends and Issues Proceedings on Advances in Pure and Applied Sciences, no. 12 (April 30, 2020): 68–79. http://dx.doi.org/10.18844/gjpaas.v0i12.4988.
Pełny tekst źródłaHu, Lili, Jingjing Zhang, Xiaofei Wu, et al. "CT-based multi-regional radiomics model for predicting contrast medium extravasation in patients with tumors: A case-control study." PLOS ONE 20, no. 3 (2025): e0314601. https://doi.org/10.1371/journal.pone.0314601.
Pełny tekst źródłaWei, Zhi-Yao, Zhe Zhang, Dong-Li Zhao, Wen-Ming Zhao, and Yuan-Guang Meng. "Magnetic resonance imaging-based radiomics model for preoperative assessment of risk stratification in endometrial cancer." World Journal of Clinical Cases 12, no. 26 (2024): 5908–21. http://dx.doi.org/10.12998/wjcc.v12.i26.5908.
Pełny tekst źródłaLei, Chu-qian, Wei Wei, Zhen-yu Liu, et al. "Radiomics analysis for pathological classification prediction in BI-RADS category 4 mammographic calcifications." Journal of Clinical Oncology 37, no. 15_suppl (2019): e13055-e13055. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e13055.
Pełny tekst źródłaRozprawy doktorskie na temat "Radiomics analysis"
Xu, Chongrui. "Quantitative Radiomic Analysis for Prognostic Medical Applications." Thesis, The University of Sydney, 2019. https://hdl.handle.net/2123/21517.
Pełny tekst źródłaOrtiz, Ramón Rafael. "Radiomics for diagnosis and assessing brain diseases: an approach based on texture analysis on magnetic resonance imaging." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/119118.
Pełny tekst źródłaIyer, Sukanya Raj. "Deformation heterogeneity radiomics to predict molecular sub-types and overall survival in pediatric Medulloblastoma." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1588601774292049.
Pełny tekst źródłaWang, Dingqian. "Quantitative analysis with machine learning models for multi-parametric brain imaging data." Thesis, The University of Sydney, 2019. https://hdl.handle.net/2123/22245.
Pełny tekst źródłaBoughdad, Sarah. "Contributions of radiomics in ¹⁸F-FDG PET/CT and in MRI in breast cancer." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS500.
Pełny tekst źródłaMahon, Rebecca N. "Advanced Imaging Analysis for Predicting Tumor Response and Improving Contour Delineation Uncertainty." VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5516.
Pełny tekst źródłaOliver, Jasmine Alexandria. "Increasing 18F-FDG PET/CT Capabilities in Radiotherapy for Lung and Esophageal Cancer via Image Feature Analysis." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6123.
Pełny tekst źródłaPrasanna, Prateek. "NOVEL RADIOMICS FOR SPATIALLY INTERROGATING TUMOR HABITAT: APPLICATIONS IN PREDICTING TREATMENT RESPONSE AND SURVIVAL IN BRAIN TUMORS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case149624929700524.
Pełny tekst źródłaChirra, Prathyush V. Chirra. "EMPIRICAL EVALUATION OFCROSS-SITE REPRODUCIBILITY ANDDISCRIMINABILITY OF RADIOMICFEATURES FOR CHARACTERIZINGTUMOR APPEARANCE ON PROSTATEMRI." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1528456281983062.
Pełny tekst źródłaBasu, Satrajit. "Developing Predictive Models for Lung Tumor Analysis." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/3963.
Pełny tekst źródłaKsiążki na temat "Radiomics analysis"
Ma, Xuelei, Lei Deng, Rong Tian, and Chunxiao Guo, eds. Novel Methods for Oncologic Imaging Analysis: Radiomics, Machine Learning, and Artificial Intelligence. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88971-347-9.
Pełny tekst źródłaCzęści książek na temat "Radiomics analysis"
Veeraraghavan, Harini. "Radiomics analysis for gynecologic cancers." In Radiomics and Radiogenomics. Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781351208277-19.
Pełny tekst źródłaGhosh, Adarsh, and Suraj D. Serai. "Radiomics and Texture Analysis." In Advanced Clinical MRI of the Kidney. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-40169-5_27.
Pełny tekst źródłaChen, Qingfeng. "Fusion and Radiomics Study of Multimodal Medical Images." In Association Analysis Techniques and Applications in Bioinformatics. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8251-6_10.
Pełny tekst źródłaYang, Jiancheng, Rongyao Fang, Bingbing Ni, Yamin Li, Yi Xu, and Linguo Li. "Probabilistic Radiomics: Ambiguous Diagnosis with Controllable Shape Analysis." In Lecture Notes in Computer Science. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32226-7_73.
Pełny tekst źródłaMorvan, Ludivine, Cristina Nanni, Anne-Victoire Michaud, et al. "Learned Deep Radiomics for Survival Analysis with Attention." In Predictive Intelligence in Medicine. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59354-4_4.
Pełny tekst źródłaEl Naqa, Issam. "Computerized Prediction of Treatment Outcomes and Radiomics Analysis." In Image-Based Computer-Assisted Radiation Therapy. Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2945-5_14.
Pełny tekst źródłaShi, Zhenwei, Chong Zhang, Inge Compter, et al. "A Feature-Pooling and Signature-Pooling Method for Feature Selection for Quantitative Image Analysis: Application to a Radiomics Model for Survival in Glioma." In Radiomics and Radiogenomics in Neuro-oncology. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40124-5_8.
Pełny tekst źródłaKlontzas, Michail E., and Renato Cuocolo. "Machine Learning Methods for Radiomics Analysis: Algorithms Made Easy." In Imaging Informatics for Healthcare Professionals. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25928-9_4.
Pełny tekst źródłaPiantadosi, Gabriele, Giampaolo Bovenzi, Giuseppe Argenziano, et al. "Skin Lesions Classification: A Radiomics Approach with Deep CNN." In New Trends in Image Analysis and Processing – ICIAP 2019. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30754-7_26.
Pełny tekst źródłaAli, Muhammad, Viviana Benfante, Giuseppe Cutaia, et al. "Prostate Cancer Detection: Performance of Radiomics Analysis in Multiparametric MRI." In Image Analysis and Processing - ICIAP 2023 Workshops. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-51026-7_8.
Pełny tekst źródłaStreszczenia konferencji na temat "Radiomics analysis"
Yadav, Neha, Andrew Turangan, Huawei Han, et al. "Systematic Approach to Identifying Sources of Variation in CT Radiomics: A Phantom Study." In 2024 20th International Symposium on Medical Information Processing and Analysis (SIPAIM). IEEE, 2024. https://doi.org/10.1109/sipaim62974.2024.10783586.
Pełny tekst źródłaFilos, Dimitris, Dimitris Fotopoulos, Maria Anastasia Rouni, and Ioanna Chouvarda. "Machine Learning-Based Whole Gland Radiomics Analysis for Prostate Cancer Classification." In 2024 IEEE International Symposium on Biomedical Imaging (ISBI). IEEE, 2024. http://dx.doi.org/10.1109/isbi56570.2024.10635588.
Pełny tekst źródłaFields, Jacquelyn, Steven Cen, Xiaomeng Lei, et al. "CEM Radiomics for Distinguishing Benign vs Malignant Lesions in Patients with Invasive Breast Cancer or Benign Breast Lesions." In 2024 20th International Symposium on Medical Information Processing and Analysis (SIPAIM). IEEE, 2024. https://doi.org/10.1109/sipaim62974.2024.10783603.
Pełny tekst źródłaMylona, Eugenia, Dimitrios I. Zaridis, Charalampos N. Kalantzopoulos, et al. "Large-Scale Radiomics Analysis for Prostate Cancer Detection Harnessing Machine and Deep Learning Models." In 2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI). IEEE, 2025. https://doi.org/10.1109/isbi60581.2025.10980708.
Pełny tekst źródłaSmith, R. L., K. Al-Battat, R. John, et al. "From Radiomics to Deep Learning: Leveraging Gramian Matrix Features in CNNs for NSCLC Survival Analysis." In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD). IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10657697.
Pełny tekst źródłaPeoples, Jacob J., Mohammad Hamghalam, Joshua Virani-Wall, et al. "Worse is better? Performance and bias implications of feature selection in radiomics-based survival analysis." In Computer-Aided Diagnosis, edited by Susan M. Astley and Axel Wismüller. SPIE, 2025. https://doi.org/10.1117/12.3047247.
Pełny tekst źródłaTaş, Muhammed Oğuz, and Hasan Serhan Yavuz. "Survival Analysis in Lung Cancer: A Comparative Study of Different Approaches Using NSCLC-Radiomics (Lung1) Data." In 2024 Innovations in Intelligent Systems and Applications Conference (ASYU). IEEE, 2024. https://doi.org/10.1109/asyu62119.2024.10757041.
Pełny tekst źródłaAhmadyar, Y., R. Samimi, A. Kamali-Asl, J. Majidpour, H. Arabi, and H. Zaidi. "Predicting Neoadjuvant Therapy Response in Breast Cancer Patients via Radiomics Analysis of Dynamic Contrast-Enhanced MRI Imaging Features." In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD). IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10655295.
Pełny tekst źródłaAzarianpour Esfahani, Sepideh, Ammar Hoori, Tao Hu, Sadeer Al-Kindi, Sanjay Rajagopalan, and David L. Wilson. "Improving cardiovascular risk assessment through comprehensive radiomics analysis of epicardial adipose tissue in screening non-contrast CT calcium score images." In Clinical and Biomedical Imaging, edited by Barjor S. Gimi and Andrzej Krol. SPIE, 2025. https://doi.org/10.1117/12.3047461.
Pełny tekst źródłaPlaczek, Fabian, Katarína Benčurová, Khashayar Memarpour, et al. "Optical coherence tomography (OCT) as a new tool for xenograft development assessment: automated radiomics on OCT/OCT-angiography data of an in ovo xenograft model derived from colorectal cancer liver metastasis." In Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XXIII, edited by Attila Tarnok, Jessica P. Houston, and Xuantao Su. SPIE, 2025. https://doi.org/10.1117/12.3041727.
Pełny tekst źródłaRaporty organizacyjne na temat "Radiomics analysis"
Ouyang, Zhiqiang, Qian Li, Guangrong Zheng, Tengfei Ke, Jun Yang, and Chengde Liao. Radiomics for predicting tumor microenvironment phenotypes in non-small cell lung cance: A systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, 2022. http://dx.doi.org/10.37766/inplasy2022.9.0060.
Pełny tekst źródłaChen, Jie, Xinyue Zhang, Chi Xu, and Kefu Liu. Diagnostic Performance of Radiomics Analysis for Pulmonary Cancer Airway Spread: A Systematic Review and Meta-Analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, 2024. http://dx.doi.org/10.37766/inplasy2024.10.0103.
Pełny tekst źródłaWang, Chih-Keng, Ting-Wei Wang, Chia-Fung Lu, and Yu-Te Wu. Deciphering the Prognostic Efficacy of MRI Radiomics in Nasopharyngeal Carcinoma: A Comprehensive Meta-Analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, 2024. http://dx.doi.org/10.37766/inplasy2024.2.0101.
Pełny tekst źródłaChang, Ke-Vin. Ultrasound Radiomics for Diagnosing Carpal Tunnel Syndrome: a Protocol for Systematic Review and Meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, 2023. http://dx.doi.org/10.37766/inplasy2023.9.0069.
Pełny tekst źródłaYang, Jiawen, Shuzong You, Limin Zhang, et al. Prediction Power of Radiomics in Early Recurrence of Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, 2022. http://dx.doi.org/10.37766/inplasy2022.1.0099.
Pełny tekst źródłaWang, Yingxuan, Cheng Yan, and Liqin Zhao. The value of radiomics-based machine learning for hepatocellular carcinoma after TACE: a systematic evaluation and Meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, 2022. http://dx.doi.org/10.37766/inplasy2022.6.0100.
Pełny tekst źródłazheng, xiushan. CT-based radiomics for prediction of lymph node metastasis in lung cancer A protocol for systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, 2022. http://dx.doi.org/10.37766/inplasy2022.3.0167.
Pełny tekst źródła