Artykuły w czasopismach na temat „Raman coherence”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Raman coherence”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
LEE, G. J., K. HARA, M. KATSURAGAWA, and K. HAKUTA. "NONLINEAR FREQUENCY CONVERSION BY RAMAN COHERENCE PREPARED IN SOLID HYDROGEN FILM." Journal of Nonlinear Optical Physics & Materials 13, no. 03n04 (2004): 433–37. http://dx.doi.org/10.1142/s0218863504002092.
Pełny tekst źródłaZhao, Yang, Sheng Zhang, Boyang Zhou, et al. "Molecular vibrational dynamics in PMMA studied by femtosecond CARS." Modern Physics Letters B 28, no. 28 (2014): 1450222. http://dx.doi.org/10.1142/s0217984914502224.
Pełny tekst źródłaKohles, N., P. Aechtner, and A. Laubereau. "The “coherence peak” in time-resolved coherent Raman scattering." Optics Communications 65, no. 5 (1988): 391–96. http://dx.doi.org/10.1016/0030-4018(88)90110-1.
Pełny tekst źródłaFazio, Barbara, and Alessia Irrera. "Coherence of Raman light arises from disorder." Bullettin of the Gioenia Academy of Natural Sciences of Catania 52, no. 382 (2019): MISC1—MISC3. http://dx.doi.org/10.35352/gioenia.v52i382.75.
Pełny tekst źródłaPestov, Dmitry, Gombojav O. Ariunbold, Xi Wang, et al. "Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement." Optics Letters 32, no. 12 (2007): 1725. http://dx.doi.org/10.1364/ol.32.001725.
Pełny tekst źródłaWalker, D. R., D. D. Yavuz, M. Y. Shverdin, G. Y. Yin, A. V. Sokolov, and S. E. Harris. "Raman self-focusing at maximum coherence." Optics Letters 27, no. 23 (2002): 2094. http://dx.doi.org/10.1364/ol.27.002094.
Pełny tekst źródłaChe, Junling, Wenqi Xu, Hui Wang, et al. "Controlling Raman gain with atomic coherence." Infrared Physics & Technology 127 (December 2022): 104449. http://dx.doi.org/10.1016/j.infrared.2022.104449.
Pełny tekst źródłaPalinginis, Phedon, and Hailin Wang. "Coherent Raman scattering from electron spin coherence in GaAs quantum wells." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): 1919–20. http://dx.doi.org/10.1016/j.jmmm.2003.12.1186.
Pełny tekst źródłaKou, Jun, Ren-Gang Wan, Zhi-Hui Kang, et al. "Measurement of coherence dynamics based on coherent anti-Stokes Raman scattering." Optics Communications 282, no. 23 (2009): 4573–76. http://dx.doi.org/10.1016/j.optcom.2009.08.049.
Pełny tekst źródłaGazizov, Almaz R., Myakzyum Kh Salakhov, and Sergey S. Kharintsev. "Tip-enhanced Stokes and anti-Stokes Raman scattering in defect-enriched carbon films." Journal of Physics: Conference Series 2015, no. 1 (2021): 012044. http://dx.doi.org/10.1088/1742-6596/2015/1/012044.
Pełny tekst źródłaOoi, C. H. Raymond, S. W. Harun, and H. Ahmad. "Quantum coherence effects in a Raman amplifier." Journal of Modern Optics 58, no. 1 (2011): 11–13. http://dx.doi.org/10.1080/09500340.2010.521594.
Pełny tekst źródłaLobanov, S. A., and V. G. Bespalov. "Spatial coherence of transient stimulated Raman scattering." Optics Communications 239, no. 1-3 (2004): 7–13. http://dx.doi.org/10.1016/j.optcom.2004.05.025.
Pełny tekst źródłaYeong, K. C., Joseph W. Haus, and A. V. Chizhov. "Quantum-field coherence in a Raman amplifier." Physical Review A 53, no. 5 (1996): 3606–13. http://dx.doi.org/10.1103/physreva.53.3606.
Pełny tekst źródłaRobles, Francisco E., Kevin C. Zhou, Martin C. Fischer, and Warren S. Warren. "Stimulated Raman scattering spectroscopic optical coherence tomography." Optica 4, no. 2 (2017): 243. http://dx.doi.org/10.1364/optica.4.000243.
Pełny tekst źródłaVoronine, Dmitri V., Zhenrong Zhang, Alexei V. Sokolov, and Marlan O. Scully. "Surface-enhanced FAST CARS: en route to quantum nano-biophotonics." Nanophotonics 7, no. 3 (2018): 523–48. http://dx.doi.org/10.1515/nanoph-2017-0066.
Pełny tekst źródłaMeiselman, S., O. Cohen, M. F. DeCamp, and V. O. Lorenz. "Measuring vibrational coherence lifetimes in liquid methanol using transient coherent Raman scattering." Journal of Physics: Conference Series 497 (April 9, 2014): 012004. http://dx.doi.org/10.1088/1742-6596/497/1/012004.
Pełny tekst źródłaKou, Xiaolong, Qian Zhou, Dong Wang, Jinghe Yuan, Xiaohong Fang, and Lijun Wan. "High-resolution imaging of graphene by tip-enhanced coherent anti-Stokes Raman scattering." Journal of Innovative Optical Health Sciences 12, no. 01 (2019): 1841003. http://dx.doi.org/10.1142/s1793545818410031.
Pełny tekst źródłaThai, Thanh Doan, Quy Quang Ho, and Thang Manh Nguyen. "Efficient Generation of Coherent Stokes Field in Hydrogen Gas-Filled Hollow Core Photonic Crystal Fibres." Communications in Physics 30, no. 2 (2020): 143. http://dx.doi.org/10.15625/0868-3166/30/2/14460.
Pełny tekst źródłaLucht, Robert P., Sukesh Roy, Terrence R. Meyer, and James R. Gord. "Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence." Applied Physics Letters 89, no. 25 (2006): 251112. http://dx.doi.org/10.1063/1.2410237.
Pełny tekst źródłaZhang, Zhihao, Fangbo Zhang, Bo Xu, et al. "High-Sensitivity Gas Detection with Air-Lasing-Assisted Coherent Raman Spectroscopy." Ultrafast Science 2022 (April 8, 2022): 1–8. http://dx.doi.org/10.34133/2022/9761458.
Pełny tekst źródłaGhosh, Arnab, David Gelbwaser-Klimovsky, Wolfgang Niedenzu, et al. "Two-level masers as heat-to-work converters." Proceedings of the National Academy of Sciences 115, no. 40 (2018): 9941–44. http://dx.doi.org/10.1073/pnas.1805354115.
Pełny tekst źródłaRahmatullah and Sajid Qamar. "Two-dimensional atom localization via Raman-driven coherence." Physics Letters A 378, no. 9 (2014): 684–90. http://dx.doi.org/10.1016/j.physleta.2013.12.025.
Pełny tekst źródłaGarcia, Wilson, Jonathan Palero, and Caesar Saloma. "Temporal coherence control of Nd:YAG pumped Raman shifter." Optics Communications 197, no. 1-3 (2001): 109–14. http://dx.doi.org/10.1016/s0030-4018(01)01424-9.
Pełny tekst źródłaChen, L. Q., Guo-Wan Zhang, Chun-Hua Yuan, Jietai Jing, Z. Y. Ou, and Weiping Zhang. "Enhanced Raman scattering by spatially distributed atomic coherence." Applied Physics Letters 95, no. 4 (2009): 041115. http://dx.doi.org/10.1063/1.3193550.
Pełny tekst źródłaSeparovic, Frances, Nikolai R. Skrynnikov, and Bryan C. Sanctuary. "Selective On-Resonance N.M.R. Irradiation of a Dipolar Double." Australian Journal of Chemistry 53, no. 4 (2000): 355. http://dx.doi.org/10.1071/ch00044.
Pełny tekst źródłaKatsuragawa, M., M. Suzuki, R. S. D. Sihombing, J. Z. Li, and K. Hakuta. "Nonlinear optics in solid hydrogen." Laser and Particle Beams 16, no. 4 (1998): 641–48. http://dx.doi.org/10.1017/s0263034600011459.
Pełny tekst źródłaIvanda, Mile, M. Buljan, U. V. Desnica, et al. "Low Frequency Coherent Raman Scattering of Spherical Acoustical Vibrations of Three-Dimensional Self-Organized Germanium Nanocrystals." Advances in Science and Technology 55 (September 2008): 127–31. http://dx.doi.org/10.4028/www.scientific.net/ast.55.127.
Pełny tekst źródłaChattopadhyay, Amit K., Diar Nasiev, Srikanth Sugavanam, Nikita Tarasov, and Dmitry Churkin. "Laminar-Turbulent Transition in Raman Fiber Lasers: A First Passage Statistics Based Analysis." Nature Scientific Reports 6 (June 28, 2016): 28492. https://doi.org/10.5281/zenodo.56570.
Pełny tekst źródłaMeng, Xiangfu, Chen Wang, Honghai An, Guo Jia, Huazhen Zhou, and Sizu Fu. "Experimental observation of backscattered light based on different coherence between incident laser beams." High Power Laser Science and Engineering 1, no. 2 (2013): 94–97. http://dx.doi.org/10.1017/hpl.2013.11.
Pełny tekst źródłaEnaki, Nicolae A. "Cooperative properties of multiple quantum scattering: I quantum nutation." Physica Scripta 99, no. 4 (2024): 045102. http://dx.doi.org/10.1088/1402-4896/ad29cb.
Pełny tekst źródłaChathanathil, Jabir, Dmitry Budker, and Svetlana A. Malinovskaya. "Quantum control via chirped coherent anti-Stokes Raman spectroscopy." Quantum Science and Technology 8 (July 14, 2023): 045005. https://doi.org/10.1088/2058-9565/ace3ed.
Pełny tekst źródłaMeddour, H., Sh Askar, S. Dehraj, et al. "Efficient two-dimensional Fraunhofer diffraction pattern via electron spin coherence." Laser Physics 33, no. 11 (2023): 116003. http://dx.doi.org/10.1088/1555-6611/acfd9a.
Pełny tekst źródłaKamali, Tschackad, Boris Považay, Sunil Kumar, et al. "Hybrid single-source online Fourier transform coherent anti-Stokes Raman scattering/optical coherence tomography." Optics Letters 39, no. 19 (2014): 5709. http://dx.doi.org/10.1364/ol.39.005709.
Pełny tekst źródłaKulatilaka, Waruna D., Paul S. Hsu, Hans U. Stauffer, James R. Gord, and Sukesh Roy. "Direct measurement of rotationally resolved H2 Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering." Applied Physics Letters 97, no. 8 (2010): 081112. http://dx.doi.org/10.1063/1.3483871.
Pełny tekst źródłaNovikov, S., T. Sweeney, J. E. Robinson, et al. "Raman coherence in a circuit quantum electrodynamics lambda system." Nature Physics 12, no. 1 (2015): 75–79. http://dx.doi.org/10.1038/nphys3537.
Pełny tekst źródłaQamar, Shahid, S. Y. Zhu, and M. S. Zubairy. "Two-photon phase-sensitive amplifier via Raman-driven coherence." Optics Communications 147, no. 4-6 (1998): 274–78. http://dx.doi.org/10.1016/s0030-4018(97)87581-5.
Pełny tekst źródłaGel'mukhanov, Faris, and Hans A˚gren. "Dynamics and coherence of resonant X-ray Raman scattering." Journal of Electron Spectroscopy and Related Phenomena 88-91 (March 1998): 29–33. http://dx.doi.org/10.1016/s0368-2048(97)00263-6.
Pełny tekst źródłaLerminiaux, Ch, and M. Dumont. "Saturation-spectroscopy transients from Raman coherence between metastable levels." Journal of the Optical Society of America B 3, no. 4 (1986): 477. http://dx.doi.org/10.1364/josab.3.000477.
Pełny tekst źródłaPenman, C. "Development of coherence in the Raman free-electron laser." Optics Communications 119, no. 1-2 (1995): 183–90. http://dx.doi.org/10.1016/0030-4018(95)00355-c.
Pełny tekst źródłaMa, Dongxia, and Yuri V. Rostovtsev. "Efficient excitation of Raman coherence by a gradient force." Journal of Raman Spectroscopy 44, no. 9 (2013): 1259–62. http://dx.doi.org/10.1002/jrs.4353.
Pełny tekst źródłaAriunbold, Gombojav O., Bryan Semon, Supriya Nagpal, and Yuri Rostovtsev. "Ultrafast dephasing in hydrogen-bonded pyridine–water mixtures." Open Physics 19, no. 1 (2021): 234–40. http://dx.doi.org/10.1515/phys-2021-0027.
Pełny tekst źródłaPlaczek, Fabian, Eliana Cordero Bautista, Simon Kretschmer, et al. "Morpho-molecular ex vivo detection and grading of non-muscle-invasive bladder cancer using forward imaging probe based multimodal optical coherence tomography and Raman spectroscopy." Analyst 145, no. 4 (2020): 1445–56. http://dx.doi.org/10.1039/c9an01911a.
Pełny tekst źródłaAndreana, Marco, Ryan Sentosa, Mikael T. Erkkilä, Wolfgang Drexler, and Angelika Unterhuber. "Depth resolved label-free multimodal optical imaging platform to study morpho-molecular composition of tissue." Photochemical & Photobiological Sciences 18, no. 5 (2019): 997–1008. http://dx.doi.org/10.1039/c8pp00410b.
Pełny tekst źródłaGibson, Emily A., Omid Masihzadeh, Tim C. Lei, David A. Ammar, and Malik Y. Kahook. "Multiphoton Microscopy for Ophthalmic Imaging." Journal of Ophthalmology 2011 (2011): 1–11. http://dx.doi.org/10.1155/2011/870879.
Pełny tekst źródłaWang, Pan, Shengtao Lin, Jiaojiao Zhang, et al. "Efficient 1054 nm Raman Random Fiber Laser." Photonics 10, no. 7 (2023): 851. http://dx.doi.org/10.3390/photonics10070851.
Pełny tekst źródłaAzkune, Mikel, Igor Ayesta, Leire Ruiz-Rubio, Eneko Arrospide, Jose Luis Vilas-Vilela, and Joseba Zubia. "Hydrogel-Core Microstructured Polymer Optical Fibers for Selective Fiber Enhanced Raman Spectroscopy." Sensors 21, no. 5 (2021): 1845. http://dx.doi.org/10.3390/s21051845.
Pełny tekst źródłaChiwo, F. S., and And F. J. Gonzalez. "Design and implementation of a low-cost portable Raman spectrometer." Revista Mexicana de Física 65, no. 3 (2019): 274. http://dx.doi.org/10.31349/revmexfis.65.274.
Pełny tekst źródłaDarvin, Maxim E. "Optical Methods for Non-Invasive Determination of Skin Penetration: Current Trends, Advances, Possibilities, Prospects, and Translation into In Vivo Human Studies." Pharmaceutics 15, no. 9 (2023): 2272. http://dx.doi.org/10.3390/pharmaceutics15092272.
Pełny tekst źródłaZadoyan, R., and V. A. Apkarian. "Imaging the molecular rovibrational coherence through time-gated, frequency-resolved coherent anti-Stokes Raman scattering." Chemical Physics Letters 326, no. 1-2 (2000): 1–10. http://dx.doi.org/10.1016/s0009-2614(00)00689-8.
Pełny tekst źródłaYe, C. Y., V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully. "Control of population and atomic coherence by adiabatic rapid passage and optimization of coherent anti-Stokes Raman scattering signal by maximal coherence." Journal of Modern Optics 51, no. 16-18 (2004): 2555–69. http://dx.doi.org/10.1080/09500340408231814.
Pełny tekst źródła