Artykuły w czasopismach na temat „Rational Strain, Metabolic Engineering”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Rational Strain, Metabolic Engineering”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Tsouka, Sophia, Meric Ataman, Tuure Hameri, Ljubisa Miskovic, and Vassily Hatzimanikatis. "Constraint-based metabolic control analysis for rational strain engineering." Metabolic Engineering 66 (July 2021): 191–203. http://dx.doi.org/10.1016/j.ymben.2021.03.003.
Pełny tekst źródłaDagariya, Sakshi, Janvi Bhatankar, Tikam Chand Dakal, Bhana Ram Gadi, and Paolo Giudici. "Metabolic and Evolutionary Engineering of Food Yeasts." Processes 13, no. 6 (2025): 1852. https://doi.org/10.3390/pr13061852.
Pełny tekst źródłaFreedman, Benjamin G., Parker W. Lee, and Ryan S. Senger. "Engineering the Metabolic Profile of Clostridium cellulolyticum with Genomic DNA Libraries." Fermentation 9, no. 7 (2023): 605. http://dx.doi.org/10.3390/fermentation9070605.
Pełny tekst źródłaBurgardt, Arthur, Ludovic Pelosi, Mahmoud Hajj Chehade, Volker F. Wendisch, and Fabien Pierrel. "Rational Engineering of Non-Ubiquinone Containing Corynebacterium glutamicum for Enhanced Coenzyme Q10 Production." Metabolites 12, no. 5 (2022): 428. http://dx.doi.org/10.3390/metabo12050428.
Pełny tekst źródłaLentsch, Verena, Aurore Woller, Andrea Rocker, et al. "Vaccine-enhanced competition permits rational bacterial strain replacement in the gut." Science 388, no. 6742 (2025): 74–81. https://doi.org/10.1126/science.adp5011.
Pełny tekst źródłaGao, Zhenghao, Fengli Wu, Zhidan Zhang, et al. "Improvement of L-Tryptophan Production in Escherichia coli Using Biosensor-Based, High-Throughput Screening and Metabolic Engineering." Fermentation 11, no. 5 (2025): 267. https://doi.org/10.3390/fermentation11050267.
Pełny tekst źródłaZhu, Linghuan, Sha Xu, Youran Li, and Guiyang Shi. "Improvement of 2-phenylethanol production in Saccharomyces cerevisiae by evolutionary and rational metabolic engineering." PLOS ONE 16, no. 10 (2021): e0258180. http://dx.doi.org/10.1371/journal.pone.0258180.
Pełny tekst źródłaNevoigt, Elke. "Progress in Metabolic Engineering of Saccharomyces cerevisiae." Microbiology and Molecular Biology Reviews 72, no. 3 (2008): 379–412. http://dx.doi.org/10.1128/mmbr.00025-07.
Pełny tekst źródłaNatarajan, Aravind, Thapakorn Jaroentomeechai, Mingji Li, Cameron J. Glasscock, and Matthew P. DeLisa. "Metabolic engineering of glycoprotein biosynthesis in bacteria." Emerging Topics in Life Sciences 2, no. 3 (2018): 419–32. http://dx.doi.org/10.1042/etls20180004.
Pełny tekst źródłaHuang, Wei, Yongheng Liu, Xiaomei Ma, Cilang Ma, Yuting Jiang, and Jianyu Su. "Rational Design for the Complete Synthesis of Stevioside in Saccharomyces cerevisiae." Microorganisms 12, no. 6 (2024): 1125. http://dx.doi.org/10.3390/microorganisms12061125.
Pełny tekst źródłaZhang, Xiaomei, Zhenhang Sun, Jinyu Bian, et al. "Rational Metabolic Engineering Combined with Biosensor-Mediated Adaptive Laboratory Evolution for l-Cysteine Overproduction from Glycerol in Escherichia coli." Fermentation 8, no. 7 (2022): 299. http://dx.doi.org/10.3390/fermentation8070299.
Pełny tekst źródłaTafur Rangel, Albert E., Abel García Oviedo, Freddy Cabrera Mojica, Jorge M. Gómez, and Andrés Fernando Gónzalez Barrios. "Development of an integrating systems metabolic engineering and bioprocess modeling approach for rational strain improvement." Biochemical Engineering Journal 178 (January 2022): 108268. http://dx.doi.org/10.1016/j.bej.2021.108268.
Pełny tekst źródłaIacometti, Camillo, Katharina Marx, Maria Hönick, et al. "Activating Silent Glycolysis Bypasses in Escherichia coli." BioDesign Research 2022 (May 12, 2022): 1–17. http://dx.doi.org/10.34133/2022/9859643.
Pełny tekst źródłaJeong, Sun-Wook, Jun-Ho Kim, Ji-Woong Kim, Chae Yeon Kim, Su Young Kim, and Yong Jun Choi. "Metabolic Engineering of Extremophilic Bacterium Deinococcus radiodurans for the Production of the Novel Carotenoid Deinoxanthin." Microorganisms 9, no. 1 (2020): 44. http://dx.doi.org/10.3390/microorganisms9010044.
Pełny tekst źródłaFuchino, Katsuya, Uldis Kalnenieks, Reinis Rutkis, Mara Grube, and Per Bruheim. "Metabolic Profiling of Glucose-Fed Metabolically Active Resting Zymomonas mobilis Strains." Metabolites 10, no. 3 (2020): 81. http://dx.doi.org/10.3390/metabo10030081.
Pełny tekst źródłaArora, Neha, Hong-Wei Yen, and George P. Philippidis. "Harnessing the Power of Mutagenesis and Adaptive Laboratory Evolution for High Lipid Production by Oleaginous Microalgae and Yeasts." Sustainability 12, no. 12 (2020): 5125. http://dx.doi.org/10.3390/su12125125.
Pełny tekst źródłaStovicek, Vratislav, Laura Dato, Henrik Almqvist, et al. "Rational and evolutionary engineering of Saccharomyces cerevisiae for production of dicarboxylic acids from lignocellulosic biomass and exploring genetic mechanisms of the yeast tolerance to the biomass hydrolysate." Biotechnology for Biofuels and Bioproducts 15, no. 1 (2022): 22. https://doi.org/10.1186/s13068-022-02121-1.
Pełny tekst źródłaZhang, Chi, Zhongjie Yan, Xiufang Li, Junming Wang, Xidong Ren, and Xinli Liu. "Comprehensive Analysis of Catalytic Characteristics and Molecular Mechanisms in Mutant Trametes versicolor Strains with Enhanced Laccase Activities." Fermentation 9, no. 12 (2023): 995. http://dx.doi.org/10.3390/fermentation9120995.
Pełny tekst źródłaHofer, Katharina, Lynn S. Schwardmann, Jung-Won Youn, Volker F. Wendisch, and Ralf Takors. "Single Mutation in iolT1 in ptsG-Deficient Corynebacterium glutamicum Enables Growth Boost in Xylose-Containing Media." Microorganisms 13, no. 7 (2025): 1606. https://doi.org/10.3390/microorganisms13071606.
Pełny tekst źródłaXu, Feng, Xiang Ke, Ming Hong, et al. "Exploring the metabolic fate of propanol in industrial erythromycin-producing strain via 13C labeling experiments and enhancement of erythromycin production by rational metabolic engineering of Saccharopolyspora erythraea." Biochemical and Biophysical Research Communications 542 (February 2021): 73–79. http://dx.doi.org/10.1016/j.bbrc.2021.01.024.
Pełny tekst źródłaTopaloğlu, Alican, Ömer Esen, Burcu Turanlı-Yıldız, Mevlüt Arslan, and Zeynep Petek Çakar. "From Saccharomyces cerevisiae to Ethanol: Unlocking the Power of Evolutionary Engineering in Metabolic Engineering Applications." Journal of Fungi 9, no. 10 (2023): 984. http://dx.doi.org/10.3390/jof9100984.
Pełny tekst źródłaWang, Qingzhao, Mark S. Ou, Y. Kim, L. O. Ingram, and K. T. Shanmugam. "Metabolic Flux Control at the Pyruvate Node in an Anaerobic Escherichia coli Strain with an Active Pyruvate Dehydrogenase." Applied and Environmental Microbiology 76, no. 7 (2010): 2107–14. http://dx.doi.org/10.1128/aem.02545-09.
Pełny tekst źródłaDwijayanti, Ari, Marko Storch, Guy-Bart Stan, and Geoff S. Baldwin. "A modular RNA interference system for multiplexed gene regulation." Nucleic Acids Research 50, no. 3 (2022): 1783–93. http://dx.doi.org/10.1093/nar/gkab1301.
Pełny tekst źródłaMiskovic, Ljubisa, Susanne Alff-Tuomala, Keng Cher Soh, et al. "A design–build–test cycle using modeling and experiments reveals interdependencies between upper glycolysis and xylose uptake in recombinant S. cerevisiae and improves predictive capabilities of large-scale kinetic models." Biotechnology for Biofuels 10, no. 1 (2017): 166. https://doi.org/10.1186/s13068-017-0838-5.
Pełny tekst źródłaSheremetieva, M. E., K. E. Anufriev, T. M. Khlebodarova, N. A. Kolchanov, and A. S. Yanenko. "Rational metabolic engineering of <i>Corynebacterium glutamicum</i> to create a producer of L-valine." Vavilov Journal of Genetics and Breeding 26, no. 8 (2023): 743–57. http://dx.doi.org/10.18699/vjgb-22-90.
Pełny tekst źródłaPyne, Michael E., Stanislav Sokolenko, Xuejia Liu, et al. "Disruption of the Reductive 1,3-Propanediol Pathway Triggers Production of 1,2-Propanediol for Sustained Glycerol Fermentation by Clostridium pasteurianum." Applied and Environmental Microbiology 82, no. 17 (2016): 5375–88. http://dx.doi.org/10.1128/aem.01354-16.
Pełny tekst źródłaChoi, Bo Hyun, Hyun Joon Kang, Sun Chang Kim, and Pyung Cheon Lee. "Organelle Engineering in Yeast: Enhanced Production of Protopanaxadiol through Manipulation of Peroxisome Proliferation in Saccharomyces cerevisiae." Microorganisms 10, no. 3 (2022): 650. http://dx.doi.org/10.3390/microorganisms10030650.
Pełny tekst źródłaParamasivan, Kalaivani, Aneesha Abdulla, Nabarupa Gupta, and Sarma Mutturi. "In silico target-based strain engineering of Saccharomyces cerevisiae for terpene precursor improvement." Integrative Biology 14, no. 2 (2022): 25–36. http://dx.doi.org/10.1093/intbio/zyac003.
Pełny tekst źródłaPyne, Michael, Murray Moo-Young, Duane Chung, and C. Chou. "Antisense-RNA-Mediated Gene Downregulation in Clostridium pasteurianum." Fermentation 1, no. 1 (2015): 113–26. http://dx.doi.org/10.3390/fermentation1010113.
Pełny tekst źródłaDeeba, Farha, Kukkala Kiran Kumar, Girish H. Rajacharya, and Naseem A. Gaur. "Metabolomic Profiling Revealed Diversion of Cytidinediphosphate-Diacylglycerol and Glycerol Pathway towards Denovo Triacylglycerol Synthesis in Rhodosporidium toruloides." Journal of Fungi 7, no. 11 (2021): 967. http://dx.doi.org/10.3390/jof7110967.
Pełny tekst źródłaNeves, Rui P. P., Bruno Araújo, Maria J. Ramos, and Pedro A. Fernandes. "Feedback Inhibition of DszC, a Crucial Enzyme for Crude Oil Biodessulfurization." Catalysts 13, no. 4 (2023): 736. http://dx.doi.org/10.3390/catal13040736.
Pełny tekst źródłaHuang, Mingtao, Yunpeng Bai, Staffan L. Sjostrom, et al. "Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast." Proceedings of the National Academy of Sciences 112, no. 34 (2015): E4689—E4696. http://dx.doi.org/10.1073/pnas.1506460112.
Pełny tekst źródłaPan, Guohui, Zhengren Xu, Zhikai Guo, et al. "Discovery of the leinamycin family of natural products by mining actinobacterial genomes." Proceedings of the National Academy of Sciences 114, no. 52 (2017): E11131—E11140. http://dx.doi.org/10.1073/pnas.1716245115.
Pełny tekst źródłaDarbani, Behrooz. "Genome Evolutionary Dynamics Meets Functional Genomics: A Case Story on the Identification of SLC25A44." International Journal of Molecular Sciences 22, no. 11 (2021): 5669. http://dx.doi.org/10.3390/ijms22115669.
Pełny tekst źródłaWiedemann, Beate, and Eckhard Boles. "Codon-Optimized Bacterial Genes Improve l-Arabinose Fermentation in Recombinant Saccharomyces cerevisiae." Applied and Environmental Microbiology 74, no. 7 (2008): 2043–50. http://dx.doi.org/10.1128/aem.02395-07.
Pełny tekst źródłaCarlson, Ross, David Fell, and Friedrich Srienc. "Metabolic pathway analysis of a recombinant yeast for rational strain development." Biotechnology and Bioengineering 79, no. 2 (2002): 121–34. http://dx.doi.org/10.1002/bit.10305.
Pełny tekst źródłaYe, Changchuan, Yuting Yang, Xi Chen, et al. "Metabolic engineering of Escherichia coli BW25113 for the production of 5-Aminolevulinic Acid based on CRISPR/Cas9 mediated gene knockout and metabolic pathway modification." Journal of Biological Engineering 16, no. 1 (2022). http://dx.doi.org/10.1186/s13036-022-00307-7.
Pełny tekst źródłaYang, Yuting, Yuhong Zou, Xi Chen, et al. "Metabolic engineering of Escherichia coli for the production of 5-aminolevulinic acid based on combined metabolic pathway modification and reporter-guided mutant selection (RGMS)." Biotechnology for Biofuels and Bioproducts 17, no. 1 (2024). http://dx.doi.org/10.1186/s13068-024-02530-4.
Pełny tekst źródłaYang, Qiang, Dongbo Cai, Wenshou Chen, Huiying Chen, and Wei Luo. "Combined metabolic analyses for the biosynthesis pathway of l-threonine in Escherichia coli." Frontiers in Bioengineering and Biotechnology 10 (September 9, 2022). http://dx.doi.org/10.3389/fbioe.2022.1010931.
Pełny tekst źródłaHerman, Nicolaus A., Jeffrey Li, Ripika Bedi, et al. "Development of a High-Efficiency Transformation Method and Implementation of Rational Metabolic Engineering for the Industrial Butanol Hyperproducer Clostridium saccharoperbutylacetonicum Strain N1-4." Applied and Environmental Microbiology 83, no. 2 (2016). http://dx.doi.org/10.1128/aem.02942-16.
Pełny tekst źródłaXiao, Yubei, Xuemei Tan, Qiaoning He та Shihui Yang. "Systematic metabolic engineering of Zymomonas mobilis for β-farnesene production". Frontiers in Bioengineering and Biotechnology 12 (17 травня 2024). http://dx.doi.org/10.3389/fbioe.2024.1392556.
Pełny tekst źródłaHao, Yanan, Xuewei Pan, Guomin Li, et al. "Construction of a plasmid-free l-leucine overproducing Escherichia coli strain through reprogramming of the metabolic flux." Biotechnology for Biofuels and Bioproducts 16, no. 1 (2023). http://dx.doi.org/10.1186/s13068-023-02397-x.
Pełny tekst źródłaLo, Jonathan, Chao Wu, Jonathan R. Humphreys, et al. "Thermodynamic and Kinetic Modeling Directs Pathway Optimization for Isopropanol Production in a Gas-Fermenting Bacterium." mSystems, March 27, 2023. http://dx.doi.org/10.1128/msystems.01274-22.
Pełny tekst źródłaRajacharya, Girish H., Ashima Sharma, and Syed Shams Yazdani. "Proteomics and metabolic burden analysis to understand the impact of recombinant protein production in E. coli." Scientific Reports 14, no. 1 (2024). http://dx.doi.org/10.1038/s41598-024-63148-y.
Pełny tekst źródłaLi, Zhongcai, Qian Liu, Jiahui Sun, et al. "Multivariate modular metabolic engineering for enhanced l-methionine biosynthesis in Escherichia coli." Biotechnology for Biofuels and Bioproducts 16, no. 1 (2023). http://dx.doi.org/10.1186/s13068-023-02347-7.
Pełny tekst źródłaWan, Yupeng, Hongchen Liu, Mo Xian, and Wei Huang. "Biosynthesis and metabolic engineering of 1-hydroxyphenazine in Pseudomonas chlororaphis H18." Microbial Cell Factories 20, no. 1 (2021). http://dx.doi.org/10.1186/s12934-021-01731-y.
Pełny tekst źródłaLi, Zhenxin, Songbai Yang, Zhengyu Zhang, et al. "Enhancement of acarbose production by genetic engineering and fed-batch fermentation strategy in Actinoplanes sp. SIPI12-34." Microbial Cell Factories 21, no. 1 (2022). http://dx.doi.org/10.1186/s12934-022-01969-0.
Pełny tekst źródłaZhu, Zhijian, Manyu Zhang, Dandan Liu, et al. "Development of the thermophilic fungus Myceliophthora thermophila into glucoamylase hyperproduction system via the metabolic engineering using improved AsCas12a variants." Microbial Cell Factories 22, no. 1 (2023). http://dx.doi.org/10.1186/s12934-023-02149-4.
Pełny tekst źródłaBlázquez, Blas, and Juan Nogales. "Rational Design Assisted by Evolutionary Engineering Allows (De)Construction and Optimization of Complex Phenotypes in Pseudomonas putida KT2440." Microbial Biotechnology 18, no. 3 (2025). https://doi.org/10.1111/1751-7915.70132.
Pełny tekst źródłaHuang, Jia-jun, Tao Wei, Zhi-wei Ye, et al. "Microbial Cell Factory of Baccatin III Preparation in Escherichia coli by Increasing DBAT Thermostability and in vivo Acetyl-CoA Supply." Frontiers in Microbiology 12 (January 12, 2022). http://dx.doi.org/10.3389/fmicb.2021.803490.
Pełny tekst źródła