Gotowa bibliografia na temat „Recalling-based recurrent neural network”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Recalling-based recurrent neural network”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Recalling-based recurrent neural network"
Goel, Raj Kumar, Ganesh Kumar Dixit, Saurabh Shrivastava, Manu Pratap Singh, and Shweta Vishnoi. "Implementing RNN with Non-Randomized GA for the Storage of Static Image Patterns." International Journal on Electrical Engineering and Informatics 12, no. 4 (2020): 966–78. http://dx.doi.org/10.15676/ijeei.2020.12.4.16.
Pełny tekst źródłaRai, Rahul R., and M. Mathivanan. "Recalling-Enhanced Recurrent Neural Network optimized with Chimp Optimization Algorithm based speech enhancement for hearing aids." Intelligent Decision Technologies 18, no. 1 (2024): 123–34. http://dx.doi.org/10.3233/idt-230211.
Pełny tekst źródłaDangovski, Rumen, Li Jing, Preslav Nakov, Mićo Tatalović, and Marin Soljačić. "Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications." Transactions of the Association for Computational Linguistics 7 (November 2019): 121–38. http://dx.doi.org/10.1162/tacl_a_00258.
Pełny tekst źródłaIrshad, Reyazur Rashid, Hamad Ali Abosaq, Mohammed Al Yami, et al. "Effective Stress Detection and Classification System Using African Buffalo Optimization and Recalling-Enhanced Recurrent Neural Network for Nano-Electronic Typed Data." Journal of Nanoelectronics and Optoelectronics 19, no. 7 (2024): 773–81. http://dx.doi.org/10.1166/jno.2024.3623.
Pełny tekst źródłaZhang, Cheng, Luying Li, Yanmei Liu, Xuejiao Luo, Shangguan Song, and Dingchun Xia. "Research on recurrent neural network model based on weight activity evaluation." ITM Web of Conferences 47 (2022): 02046. http://dx.doi.org/10.1051/itmconf/20224702046.
Pełny tekst źródłaGao, Tao, Xiaoling Gong, Kai Zhang, et al. "A recalling-enhanced recurrent neural network: Conjugate gradient learning algorithm and its convergence analysis." Information Sciences 519 (May 2020): 273–88. http://dx.doi.org/10.1016/j.ins.2020.01.045.
Pełny tekst źródłaBOBROVNIKOVA, K., and D. DENYSIUK. "METHOD FOR MALWARE DETECTION BASED ON THE NETWORK TRAFFIC ANALYSIS AND SOFTWARE BEHAVIOR IN COMPUTER SYSTEMS." Herald of Khmelnytskyi National University. Technical sciences 287, no. 4 (2020): 7–11. https://doi.org/10.31891/2307-5732-2020-287-4-7-11.
Pełny tekst źródłaAsadullaev, R. G., and M. A. Sitnikova. "INTELLIGENT MODEL FOR CLASSIFYING HEMODYNAMIC PATTERNS OF BRAIN ACTIVATION TO IDENTIFY NEUROCOGNITIVE MECHANISMS OF SPATIAL-NUMERICAL ASSOCIATIONS." Vestnik komp'iuternykh i informatsionnykh tekhnologii, no. 235 (January 2024): 38–45. http://dx.doi.org/10.14489/vkit.2024.01.pp.038-045.
Pełny tekst źródłaKambar, Ashwini, V. M. Chougala, and Shettar Rajashekar. "Recurrent neural network based image compression." Invertis Journal of Science & Technology 13, no. 3 (2020): 129. http://dx.doi.org/10.5958/2454-762x.2020.00013.x.
Pełny tekst źródłaPark, Dong-Chul. "Multiresolution-based bilinear recurrent neural network." Knowledge and Information Systems 19, no. 2 (2008): 235–48. http://dx.doi.org/10.1007/s10115-008-0155-1.
Pełny tekst źródłaRozprawy doktorskie na temat "Recalling-based recurrent neural network"
He, Jian. "Adaptive power system stabilizer based on recurrent neural network." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0008/NQ38471.pdf.
Pełny tekst źródłaMoradi, Mahdi. "TIME SERIES FORECASTING USING DUAL-STAGE ATTENTION-BASED RECURRENT NEURAL NETWORK." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/theses/2701.
Pełny tekst źródłaWang, Yuchen. "Detection of Opioid Addicts via Attention-based bidirectional Recurrent Neural Network." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1592255095863388.
Pełny tekst źródłaWang, Xutao. "Chinese Text Classification Based On Deep Learning." Thesis, Mittuniversitetet, Avdelningen för informationssystem och -teknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-35322.
Pełny tekst źródłaTaylor, Adrian. "Anomaly-Based Detection of Malicious Activity in In-Vehicle Networks." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36120.
Pełny tekst źródłaZheng, Yilin. "Text-Based Speech Video Synthesis from a Single Face Image." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1572168353691788.
Pełny tekst źródłaMax, Lindblad. "The impact of parsing methods on recurrent neural networks applied to event-based vehicular signal data." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223966.
Pełny tekst źródłaLiu, Chang. "Data Analysis of Minimally-Structured Heterogeneous Logs : An experimental study of log template extraction and anomaly detection based on Recurrent Neural Network and Naive Bayes." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191334.
Pełny tekst źródłaKeisala, Simon. "Using a Character-Based Language Model for Caption Generation." Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-163001.
Pełny tekst źródłaHe, Fan. "Real-time Process Modelling Based on Big Data Stream Learning." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-35823.
Pełny tekst źródłaCzęści książek na temat "Recalling-based recurrent neural network"
Saheed, Yakub Kayode. "Data Analytics for Intrusion Detection System Based on Recurrent Neural Network and Supervised Machine Learning Methods." In Recurrent Neural Networks. CRC Press, 2022. http://dx.doi.org/10.1201/9781003307822-12.
Pełny tekst źródłaZhao, Haitao, Zhihui Lai, Henry Leung, and Xianyi Zhang. "Neural-Network-Based Feature Learning: Recurrent Neural Network." In Information Fusion and Data Science. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40794-0_12.
Pełny tekst źródłaZhang, Yufei, and Jiaju Wu. "Speech Enhancement Based on Deep Neural Network and Recurrent Neural Network." In Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70665-4_15.
Pełny tekst źródłaRokui, Jun. "Autoassociative Signature Authentication Based on Recurrent Neural Network." In Artificial Intelligence and Soft Computing. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91253-0_9.
Pełny tekst źródłaBougteb, Yahya, Bouchra Frikh, Brahim Ouhbi, and El Moukhtar Zemmouri. "Attention-Based Recurrent Neural Network for Multicriteria Recommendations." In Lecture Notes in Networks and Systems. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47724-9_18.
Pełny tekst źródłaLi, Bofang, Tao Liu, Zhe Zhao, and Xiaoyong Du. "Attention-Based Recurrent Neural Network for Sequence Labeling." In Web and Big Data. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96890-2_28.
Pełny tekst źródłaAliev, Rafik, Bijan Fazlollahi, Rashad Aliev, and Babek Guirimov. "Fuzzy Time Series Prediction Method Based on Fuzzy Recurrent Neural Network." In Neural Information Processing. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11893257_95.
Pełny tekst źródłaQiao, Junfei, Xiaoqi Huang, and Honggui Han. "Recurrent Neural Network-Based Control for Wastewater Treatment Process." In Advances in Neural Networks – ISNN 2012. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31362-2_55.
Pełny tekst źródłaLotrič, Uroš, and Andrej Dobnikar. "Recurrent neural network with integrated wavelet based denoising unit." In Artificial Neural Nets and Genetic Algorithms. Springer Vienna, 2003. http://dx.doi.org/10.1007/978-3-7091-0646-4_8.
Pełny tekst źródłaMaravall, Darlo, Javier de Lope, and Miguel Ángel Patricio. "A Recurrent Neural Network for Robotic Sensory-based Search." In Artificial Neural Nets Problem Solving Methods. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44869-1_20.
Pełny tekst źródłaStreszczenia konferencji na temat "Recalling-based recurrent neural network"
Leal, Sergio, and Luis Lago. "Recurrent Neural Network based Counter Automata." In ESANN 2024. Ciaco - i6doc.com, 2024. http://dx.doi.org/10.14428/esann/2024.es2024-211.
Pełny tekst źródłaParto, Midya, Gordon H. Y. Li, Ryoto Sekine, et al. "An Optical Neural Network Based on Nanophotonic Optical Parametric Oscillators." In CLEO: Science and Innovations. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.stu3p.7.
Pełny tekst źródłaJoad, Faaiz, Rachad Atat, Hayat Mbayed, and Abdulrahman Takiddin. "Recurrent Graph Neural Network-Based Identification of Replay Attacks in Power Networks." In 2024 4th International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). IEEE, 2024. https://doi.org/10.1109/iceccme62383.2024.10796488.
Pełny tekst źródłaShang, Fengmei. "Chinese-English Neural Machine Translation Model Based on Improved Interval Value Based Recurrent Neural Network." In 2024 International Conference on Data Science and Network Security (ICDSNS). IEEE, 2024. http://dx.doi.org/10.1109/icdsns62112.2024.10691311.
Pełny tekst źródłaGan, Chengyu, and Kourosh Danai. "Fault Diagnosis With a Model-Based Recurrent Neural Network." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2327.
Pełny tekst źródłaHu, Haojin, Mengfan Liao, Chao Zhang, and Yanmei Jing. "Text classification based recurrent neural network." In 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). IEEE, 2020. http://dx.doi.org/10.1109/itoec49072.2020.9141747.
Pełny tekst źródłaXu, Zhao, Qing Song, and Danwei Wang. "Recurrent neural network based tracking control." In Vision (ICARCV 2010). IEEE, 2010. http://dx.doi.org/10.1109/icarcv.2010.5707971.
Pełny tekst źródłaMontajabi, Zahra, Vahid Khorasani Ghassab, and Nizar Bouguila. "Recurrent Neural Network-Based Video Compression." In 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2022. http://dx.doi.org/10.1109/icmla55696.2022.00154.
Pełny tekst źródłaJun, Wang, Cao Jun-xing, and You Jia-chun. "Log reconstruction based on gated recurrent unit recurrent neural network." In SEG 2019 Workshop: Mathematical Geophysics: Traditional vs Learning, Beijing, China, 5-7 November 2019. Society of Exploration Geophysicists, 2020. http://dx.doi.org/10.1190/iwmg2019_22.1.
Pełny tekst źródłaKadikis, Roberts. "Recurrent neural network based virtual detection line." In Tenth International Conference on Machine Vision (ICMV 2017), edited by Jianhong Zhou, Petia Radeva, Dmitry Nikolaev, and Antanas Verikas. SPIE, 2018. http://dx.doi.org/10.1117/12.2309772.
Pełny tekst źródłaRaporty organizacyjne na temat "Recalling-based recurrent neural network"
Shao, Lu. Automatic Seizure Detection based on a Convolutional Neural Network-Recurrent Neural Network Model. Iowa State University, 2022. http://dx.doi.org/10.31274/cc-20240624-269.
Pełny tekst źródłaEngel, Bernard, Yael Edan, James Simon, Hanoch Pasternak, and Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Pełny tekst źródłaPasupuleti, Murali Krishna. Neural Computation and Learning Theory: Expressivity, Dynamics, and Biologically Inspired AI. National Education Services, 2025. https://doi.org/10.62311/nesx/rriv425.
Pełny tekst źródła