Gotowa bibliografia na temat „Recessive dystrophic epidermolysis bullosa”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Recessive dystrophic epidermolysis bullosa”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Recessive dystrophic epidermolysis bullosa"

1

Destro, M., I. H. L. Wallow i F. S. Brightbill. "Recessive Dystrophic Epidermolysis Bullosa". Archives of Ophthalmology 105, nr 9 (1.09.1987): 1248–52. http://dx.doi.org/10.1001/archopht.1987.01060090106038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Yadav, Randhir Sagar, Amar Jayswal, Shumneva Shrestha, Sanjay Kumar Gupta i Upama Paudel. "Dystrophic Epidermolysis Bullosa". Journal of Nepal Medical Association 56, nr 213 (31.10.2018): 879–82. http://dx.doi.org/10.31729/jnma.3791.

Pełny tekst źródła
Streszczenie:
Epidermolysis bullosa is a rare inherited blistering disease with an incidence of 8-10 per million live births. Dystrophic epidermolysis bullosa is a type of epidermolysis bullosa caused by mutation in type VII collagen, COL7A1. There are 14 subtypes of dystrophic epidermolysis bullosa and 400 mutations of COL7A1. Electron microscopy is the gold standard diagnostic test but expensive. Immunofluorescence study is a suitable diagnostic alternative. Trauma prevention along with supportive care is the mainstay of therapy. Squamous cell carcinoma develops at an early age in epidermolysis bullosa than other patients, particularly in recessive dystrophic epidermolysis bullosa subtypes. Regular follow up is imperative in detecting and preventing complications. Gene therapy, cell therapy and bone marrow transplantation are the emerging novel therapeutic innovations. Preventing possible skin and mucosal injury in patients requiring surgery should be worked on. Here, we present a case of dystrophic epidermolysis bullosa in a 26 year male.
Style APA, Harvard, Vancouver, ISO itp.
3

Wood, M. L., i C. I. Harrington. "(41) Recessive dystrophic epidermolysis bullosa". British Journal of Dermatology 115, s30 (lipiec 1986): 86. http://dx.doi.org/10.1111/j.1365-2133.1986.tb07736.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Norris, J. F. B., i W. J. Cunliffe. "(21) Recessive dystrophic epidermolysis bullosa". British Journal of Dermatology 117, s32 (czerwiec 1987): 68–69. http://dx.doi.org/10.1111/j.1365-2133.1987.tb12061.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Lee, Myn Wee, George Varigos, Peter Foley i Gayle Ross. "Photodynamic Therapy for Basal Cell Carcinoma in Recessive Dystrophic Epidermolysis Bullosa". ISRN Dermatology 2011 (27.04.2011): 1–4. http://dx.doi.org/10.5402/2011/346754.

Pełny tekst źródła
Streszczenie:
A 22-year-old male with recessive dystrophic epidermolysis bullosa with a large superficial and nodular basal cell carcinoma on his right forehead was treated with photodynamic therapy. The treatment was well tolerated, and the site healed well. Patients with epidermolysis bullosa are at increased risk of developing skin cancers, particularly squamous cell carcinomas. However, basal cell carcinomas are rare in recessive dystrophic epidermolysis bullosa. As patients with epidermolysis bullosa have recurrent blistering and poor wound healing, surgery may not be the optimal choice in treating skin cancers. We present this case to highlight that photodynamic therapy may be a helpful and safe technique in the treatment of superficial skin cancers in patients with epidermolysis bullosa, as an alternative to more radical methods.
Style APA, Harvard, Vancouver, ISO itp.
6

FINE, J. D., L. B. JOHNSON, M. WEINER, A. STEIN, S. CASH, J. DELEOZ, D. T. DEVRIES i C. SUCHINDRAN. "Pseudosyndactyly and Musculoskeletal Contractures in Inherited Epidermolysis Bullosa: Experience of the National Epidermolysis Bullosa Registry, 1986–2002". Journal of Hand Surgery 30, nr 1 (luty 2005): 14–22. http://dx.doi.org/10.1016/j.jhsb.2004.07.006.

Pełny tekst źródła
Streszczenie:
Mitten deformities of the hands and feet occur in nearly every patient with the most severe subtype (Hallopeau-Siemens) of recessive dystrophic epidermolysis bullosa, and in at least 40–50% of all other recessive dystrophic epidermolysis bullosa patients. Smaller numbers of patients with dominant dystrophic, junctional, and simplex types of epidermolysis bullosa are also at risk of this complication. Surgical intervention is commonly performed to correct these deformities, but recurrence and the need for repeated surgery are common. Higher numbers of epidermolysis bullosa patients also develop musculoskeletal contractures in other anatomic sites, further impairing overall function. Lifetable analyses not only better project the cumulative risk of mitten deformities and other contractures but also emphasize the need for early surveillance and intervention, since both of these musculoskeletal complications may occur within the first year of life.
Style APA, Harvard, Vancouver, ISO itp.
7

Kumar, Sneh. "An Unusual Case Report of Dystrophica Epidermolysis Bullosa in a Child". Journal of Evolution of Medical and Dental Sciences 10, nr 37 (13.09.2021): 3314–16. http://dx.doi.org/10.14260/jemds/2021/672.

Pełny tekst źródła
Streszczenie:
Epidermolysis bullosa (EB) is a genetically inherited severe skin disease involving dermal-epidermal junction. Based on the appearance and involvement, it is grouped into simplex, junctional & dystrophic forms. These disorders represent heterogeneous phenotypes and are correlated with a variable range of complications, from localized skin fragility to neonatal death. Genetic testing had made a precise diagnosis and it requires only supportive and symptomatic therapy. Here we report an atypical case of dystrophica epidermolysis bullosa in a 6-year-old male child. Epidermolysis bullosa (EB) is a general term used for heterogeneous group of congenital, genetic blistering disorders. It has a wide spectrum of clinical presentations. 1 It is characterized by induction of blisters by trauma, exacerbation of blistering in warm weather and healing with scarring. EB can be categorized under three major groups - epidermolysis bullosa simplex (EBS), junctional epidermolysis bullosa (JEB) and dystrophic epidermolysis bullosa (DEB). EB simplex has an incidence and a prevalence rate of 10.75 and 4.65, 2.04 and 0.44 of junctional EBs and 2.86 and 0.99 of dystrophic EBs and recessive dystrophic EB 2.04 and 0.92 respectively.2 The dystrophic forms are characterized by deformities of the skin including coalescence of the fingers, nail changes and milia formation.3 This case report highlights the rare presentation of recurrent episodes of blisters and limb deformities in 6 - year - old male children.
Style APA, Harvard, Vancouver, ISO itp.
8

Pajardi, Giorgio, Giorgio Pivato i Giorgio Rafanelli. "Rehabilitation in Recessive Dystrophic Epidermolysis Bullosa". Techniques in Hand & Upper Extremity Surgery 5, nr 3 (wrzesień 2001): 173–77. http://dx.doi.org/10.1097/00130911-200109000-00009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Kemmett, D., i G. C. Priestley. "Phenytoin in recessive dystrophic epidermolysis bullosa". Journal of Dermatological Treatment 1, nr 3 (styczeń 1990): 147–49. http://dx.doi.org/10.3109/09546639009086718.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

BAUER, EUGENE A. "Collagenase in Recessive Dystrophic Epidermolysis Bullosa". Annals of the New York Academy of Sciences 460, nr 1 Biology, Chem (grudzień 1985): 311–20. http://dx.doi.org/10.1111/j.1749-6632.1985.tb51178.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Recessive dystrophic epidermolysis bullosa"

1

Compton, Sarah. "Developing ex vivo gene therapy for recessive dystrophic epidermolysis bullosa". Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393399.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Wessagowit, Vasarat. "Keratinocyte gene expression profile in recessive dystrophic epidermolysis bullosa wounds". Thesis, King's College London (University of London), 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408868.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Abdul, Wahab Alya Omar. "The development of gene therapy for recessive dystrophic epidermolysis bullosa". Thesis, King's College London (University of London), 2017. https://kclpure.kcl.ac.uk/portal/en/theses/the-development-of-gene-therapy-for-recessive-dystrophic-epidermolysis-bullosa(4a405332-0065-448f-b62c-4977ca0d8bf0).html.

Pełny tekst źródła
Streszczenie:
Epidermolysis bullosa (EB) is a group of inherited mechanobullous disorders characterised by trauma induced blistering. One of the most severe subtypes is recessive dystrophic epidermolysis bullosa (RDEB). RDEB is due to loss of function mutations in the gene encoding type VII collagen (COL7A1), one of the main constituents of anchoring fibrils anchoring the basement membrane to the underlying dermis. There is no cure for this devastating condition although promising pre-clinical studies for strategies using genetic correction, protein replacement, cell therapy or drug therapies are underway. Reconstitution of COL7A1 expression in both keratinocyte and fibroblast cell populations has been demonstrated using ex vivo gene therapy and hypothesised to lead to new anchoring fibril formation and amelioration of disease phenotype. Feasibility of this approach had been demonstrated in pre-clinical studies using a retroviral vector, and this work details the development of a phase 1 clinical trial to graft an autologous gene corrected skin equivalent graft. Detailed analysis of a cohort of adult patients with RDEB was performed in order to identify suitable trial candidates. In addition, an alternative strategy using a lentiviral vector encoding codon-optimised COL7A1 developed in order to transduce fibroblasts to be administered intradermally was developed. Expression and secretion of full-length de novo C7 was confirmed, with transduced cells exhibiting increased levels of protein expression despite only modest transduction efficiencies. This work details the journey and obstacles encountered in developing gene therapy clinical trials for RDEB, both through the development of a phase 1 study for an autologous gene corrected skin equivalent graft as well as a phase I study of intradermal autologous gene corrected fibroblasts.
Style APA, Harvard, Vancouver, ISO itp.
4

Petrof, Gampriela. "Allogeneic cell-based therapies for individuals with recessive dystrophic epidermolysis bullosa". Thesis, King's College London (University of London), 2017. https://kclpure.kcl.ac.uk/portal/en/theses/allogeneic-cellbased-therapies-for-individuals-with-recessive-dystrophic-epidermolysis-bullosa(7e30bed8-6252-45b4-b5f3-cbe70b6a8d81).html.

Pełny tekst źródła
Streszczenie:
Epidermolysis bullosa (EB) is a clinically and genetically heterogeneous group of inherited blistering skin diseases that affect 500,000 individuals worldwide. The clinically more severe recessive dystrophic (RDEB) variant affects ~5% of EB individuals with a prevalence of 8 per one million of the population. RDEB is caused by loss-of-function mutations in the type VII collagen gene, COL7A1, which leads to reduced or absent type VII collagen (C7) and structurally defective anchoring fibrils at the dermo-epidermal junction (DEJ). From a clinical perspective, individuals with RDEB have fragile skin and are susceptible to blistering following minimal trauma, which leads to poor wound healing, scarring, contractures and oesophageal strictures. The major cause of mortality in RDEB is metastatic cutaneous squamous cell carcinoma (SCC). At present, care is mainly supportive and there are no effective treatments for this debilitating disease. The main therapeutic challenge, therefore has been to develop gene, protein, cell and drug therapies that are safe, effective and affordable. The basis of this thesis is to evaluate safety and efficacy of allogeneic cell-based therapies and attempt to elucidate their mechanism of action in wound healing in RDEB. To examine if allogeneic fibroblasts promote healing of chronic wounds in RDEB I intradermally injected allogeneic fibroblasts around the wound margins in an individual with RDEB. I demonstrated that these injections result in Heparin-Binding EGF-like Growth Factor encoding gene (HBEGF) and COL7A1 upregulation followed by C7 production. These led to reduction in wound size by 30% at 8 months post injections. HB-EGF, a member of the EGF family, has been implicated in RDEB-associated SCC. I also assessed whether another growth factor, EGF, which is commercially available for human use and which is related to HB-EGF, could upregulate COL7A1 expression in RDEB epidermal cells. I demonstrated in vitro that 100ng/ml EGF at 90 minutes and 10ng/ml at 15 minutes led to 3-fold and 5-fold COL7A1 upregulation in RDEB keratinocytes and fibroblasts respectively. HB-EGF also led to COL7A1 upregulation in RDB keratinocytes (6-fold) but to a lesser extent in RDEB fibroblasts (2-fold). To evaluate the effects of intradermally injected allogeneic fibroblasts in a larger number of RDEB individuals, I conducted a prospective, randomised, vehicle-controlled, phase II clinical trial. Twenty-six wounds in 11 adults with RDEB were injected. Fourteen wounds received fibroblasts and 12 were injected with vehicle only. I showed that allogeneic fibroblasts are safe and lead to a greater reduction in erosion area compared to vehicle within the first 28 days following treatment with a single set of injections to the wound margins, but not thereafter. Finally, I explored the safety and potential of intravenously administered allogeneic bone marrow-derived mesenchymal stromal cells (BM-MSCs) in children with RDEB in an open-label trial. I showed that the infusions were well-tolerated, with no serious adverse events. Although, there was no increase in C7 deposition, children and their parents reported improved wound healing, reduction in blister numbers and pruritus, increased skin resilience to trauma, and reduced pain during dressing changes. In addition, significant reduction in circulating inflammatory cytokines (IL-10, p < 0.001; IFN-γ, p=0.04 and IL-17A, p=0.03) was observed. Taken together, these data reveal new insights into the mechanisms of action of allogeneic cell-based therapies in RDEB and provide evidence for their efficacy in wound healing and reducing morbidity in the context of clinical trials.
Style APA, Harvard, Vancouver, ISO itp.
5

Proudfoot, Laura Erin. "The characterisation of cellular and tissue chronic inflammation in recessive dystrophic epidermolysis bullosa". Thesis, King's College London (University of London), 2015. https://kclpure.kcl.ac.uk/portal/en/theses/the-characterisation-of-cellular-and-tissue-chronic-inflammation-in-recessive-dystrophic-epidermolysis-bullosa(ebd52ed7-020a-48cb-9f75-4110ed7d9117).html.

Pełny tekst źródła
Streszczenie:
Recessive dystrophic epidermolysis bullosa (RDEB) occurs as a result of loss of function mutations in COL7A1, resulting in reduced/absent collagen VII deposition in the anchoring fibril adhesion structures at the dermal-epidermal junction. The condition is typified by severe trauma-induced blistering and cutaneous erosions from infancy and chronic wounds that progress to early aggressive cutaneous squamous cell carcinomas (SCCs) which are the main cause of death in this patient cohort. Thus far, the RDEB chronic inflammatory environment has not been characterised in detail nor is there any theoretical basis for the targeting of candidate genes or inflammatory biomarkers to reduce chronic inflammation that might halt the inevitable malignant decline. The studies presented herein provide a detailed comparative analysis of RDEB wounded skin and control skin at the transcriptional and immunological levels. The findings presented in this thesis: 1) define baseline gene expression profiles and immunobiology of chronically inflamed RDEB skin and blood; 2) reveal matrix metalloproteinase (MMP) family genes germane to RDEB chronic inflammation; 3) provide a body of data and supportive evidence that targeting interleukin (IL)-17-associated signalling pathways may be therapeutically meaningful for treating RDEB patients with chronic wounds; and 4) generate new insights into the functional relevance of these targets in RDEB wounds and RDEB-SCC. Illumina whole-genome expression microarray was used to define the pattern of differential gene expression in RDEB wounded skin. MMP-11, -2 and -9 were revealed as significantly upregulated in RDEB chronic wounds, with augmented MMP-11 levels disclosed in the sera of an extended RDEB cohort. Detailed immunoprofiling of RDEB skin and blood via fluorescence-activated flow cytometry revealed a significant elevation in the pro-inflammatory and pro-tumourigenic cytokine IL-17A, further supported on serum multiplex analyses and correlating with immunohistochemical labelling of RDEB wound and RDEB-SCC cutaneous sections. IL-17A significantly enhanced RDEB and RDEB-SCC fibroblast migration and MMP inhibition alone was insufficient to inhibit this effect. An in vitro organotypic model system was developed to study the effects of IL-17A and MMP-11 on RDEB keratinocytes, although pre-treatment did not induce keratinocyte migration or curtail cell invasion in the RDEB-SCC co-cultures. Taken together, these data provide rationale for future work to examine the potential utility of anti-IL-17 biologic innovations as a therapy for individuals with RDEB, although more detailed functional pre-clinical studies are still needed.
Style APA, Harvard, Vancouver, ISO itp.
6

Marx, Jennifer. "In vitro modelling of recessive dystrophic epidermolysis bullosa (RDEB) using stem cells and genome editing". Thesis, Högskolan i Skövde, Institutionen för hälsa och lärande, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-17333.

Pełny tekst źródła
Streszczenie:
Epidermolysis Bullosa (EB) is a group of inherited skin blistering diseases which is associated with severely compromised integrity of the skin. One of the most severe form is recessive dystrophic EB (RDEB) caused by loss-of-function mutations in the COL7A1 gene, encoding type VII collagen (COL7). Deficiency of COL7 results in skin fragility, leading to severe recurrent trauma-induced blistering of the skin. Currently, there is no effective therapy or cure for RDEB. Several treatment approaches are ongoing, but the lack of representative skin models of the physiology and structure of the skin have limited such studies to date. Here, induced pluripotent stem cell (iPSC) technology was used in conjunction with genome editing on previously derived iPSCs heterozygous for a mutation in COL7A1 gene (carrier RDEB-iPSC or cRDEB-iPSC) to generate isogenic cRDEB-iPSC lines by complete knock-out of the COL7A1 gene. These can be further used for the generation of 3D human skin organoids and modeling disease in vitro. First, successful reprogramming of the cRDEB-iPSC line was validated in vitro by pluripotency and differentiation capacity assays. CRISPR-Cas9 targeted gene knock-out upon ribonucleoprotein (RNP) transfection of cRDEB-iPSCs using two different RNPs yielded at least one potential knock-out of the COL7A1 gene. However, COL7 expression must be further assessed to confirm complete COL7A1 gene knock-out on the wild-type allele. Nonetheless, the project demonstrated the success in combining the novel iPSCs and CRISPR-Cas9 technologies but revealed the complexity and possible complications associated with their application.
Style APA, Harvard, Vancouver, ISO itp.
7

Cole, Clare Louise. "Identification of OATP1B3 as a potential therapeutic target in Recessive Dystrophic Epidermolysis Bullosa Associated Squamous Cell Carcinoma". Thesis, University of Dundee, 2011. https://discovery.dundee.ac.uk/en/studentTheses/20729995-be96-4f29-80b8-53da131c6fd8.

Pełny tekst źródła
Streszczenie:
Epidermolysis Bullosa encompasses a group of inherited heterogeneous diseases involving trauma induced blistering of the skin. Recessive Dystrophic Epidermolysis Bullosa (RDEB) is one of the most debilitating variants of the disease and patients are predisposed to developing aggressive cutaneous Squamous Cell Carcinoma (SCC). Unlike SCC in the general population, the primary cause of RDEB associated SCC is not UV-radiation. SCC in RDEB patients has poor prognosis due to a high frequency of recurrence and metastasis. 70% of all severe generalized RDEB patients die from SCC by the age of 45, compared to only 1.25% of all patients with UV-induced SCC in the general population (Fine et al. 2008), making SCC the leading cause of death in these RDEB patients. The aim of this investigation was to identify therapeutic targets for RDEB associated SCC. Global gene expression studies identified 36 candidate genes which were differentially regulated in RDEB SCC (n=4) compared with non-RDEB SCC (n=5) primary keratinocyte cultures. The validation of these genes by qRT-PCR in replicate cultures of RDEB SCC (n=3), non-RDEB SCC (n=3) keratinocytes and normal human keratinocytes as a control, deduced 5 genes to be significantly differentially regulated. Of particular interest, is the over-expression of SLCO1B3 by 6.25 fold in RDEB SCC keratinocytes (p = 0.035). SLCO1B3 encodes the organic anion transporter OATP1B3, which is normally exclusively expressed on the basolateral membrane of hepatocytes. qRT-PCR revealed the mRNA expression level of SLCO1B3 is reduced in RDEB SCC keratinocyte cultures when COL7A1, the causal gene mutated in RDEB, is re-expressed, suggesting that COL7A1 which encodes the Type VII Collagen protein and is secreted into the extracellular matrix, may suppress the transcription of SLCO1B3. Immunofluorescent staining of RDEB SCC keratinocytes and tissue identified OATP1B3 expression, whilst qRT-PCR using mRNA isolated from freshly frozen skin and SCC tissue samples from both RDEB and non-RDEB individuals identified increased SLCO1B3 mRNA expression in RDEB SCC in vivo. Over expression of SLCO1B3 and increased activity of OATP1B3 is associated with breast, colon and pancreatic cancer and is a known transporter of chemotherapeutic agents, such as Methotrexate and Paclitaxel. These observations have led to speculation that, as a transporter over expressed in cancer and capable of introducing drugs into cells, OATP1B3 represents a potential therapeutic target. Preliminary results from a cell viability assay suggest that exposing RDEB SCC cells to Microcystin-LR specifically reduces cell viability in a SLCO1B3 dependent manner. This supports the conclusion that SLCO1B3 represents a viable RDEB SCC specific therapeutic target and provides a pathway which can be exploited to deliver anti-cancer drugs directly to tumour cells whilst reducing the systemic toxicity of these agents.
Style APA, Harvard, Vancouver, ISO itp.
8

Ganier, Clarisse. "Potentiel thérapeutique des cellules stromales mésenchymateuses dans l'épidermolyse bulleuse dystrophique récessive Intradermal injection of bone marrow-MSCs corrects recessive dystrophic epidermolysis bullosa in a xenograft model Intradermal injection of human umbilical cord-MSCs shows less efficacy than bone marrow-MSCs to correct recessive dystrophic epidermolysis bullosa in a xenograft model". Thesis, Sorbonne Paris Cité, 2018. https://wo.app.u-paris.fr/cgi-bin/WebObjects/TheseWeb.woa/wa/show?t=2117&f=15515.

Pełny tekst źródła
Streszczenie:
L'épidermolyse bulleuse dystrophique récessive (EBDR) est une maladie génétique cutanée due à des mutations de perte de fonction du gène COL7A1 codant pour le collagène VII. Le collagène VII forme les fibres d'ancrage, structures essentielles pour l'adhésion de l'épiderme au derme sous-jacent. Les patients EBDR développent dès la naissance, des décollements bulleux de la peau et des muqueuses responsables de plaies chroniques et de graves complications locales et systémiques. La survenue de carcinomes épidermoïdes cutanés agressifs reste la première cause de décès. Il n'existe pas de traitement à ce jour. Les cellules stromales mésenchymateuses (CSM) sont des cellules multipotentes, isolées à partir de tissus adultes (moelle osseuse, tissu adipeux) ou de tissus périnataux (cordon ombilical). Des travaux antérieurs ont montré que les injections locales et systémiques de CSM issues de la moelle osseuse (CSM-MO) allogéniques ont un potentiel pour réduire l'inflammation cutanée et améliorer la cicatrisation des plaies chez les patients EBDR. Ces améliorations cliniques sont cependant transitoires et les mécanismes d'action des CSM-MO dans l'EBDR ainsi que leur durée de vie après injection sont mal connus. Les CSM-MO pourraient agir via leurs propriétés immunomodulatrices, anti-fibrotiques, pro-angiogéniques, par un effet paracrine permettant l'expression de collagène VII endogène et/ou la sécrétion de collagène VII par les CSM-MO injectées. L'objectif de cette thèse a été d'étudier le potentiel thérapeutique des CSM dans des modèles précliniques de l'EBDR. Nous avons tout d'abord montré que les CSM-MO expriment une quantité d'ARNm de COL7A1 et de collagène VII comparable aux fibroblastes dermiques sains en culture. Nous avons ensuite évalué la capacité des CSM-MO humaines à survivre et produire du collagène VII à la jonction dermo-épidermique (JDE) à long terme après une injection locale dans des peaux équivalentes humaines EBDR greffées sur souris nude. L'injection intradermique (ID) de CSM-MO in vivo a permis de restaurer l'expression du collagène VII ainsi que la formation de fibres d'ancrage à la JDE jusqu'à 6 mois après l'injection. Les CSM-MO sont retrouvées dans la peau équivalente jusqu'à 4 mois après l'injection. Ces résultats montrent qu'une injection ID unique de CSM-MO in vivo permet de rétablir une production prolongée de collagène VII synthétisé par les cellules injectées et d'améliorer l'adhésion dermo-épidermique de la peau équivalente EBDR. Nous avons ensuite comparé l'efficacité des CSM issues de la gelée de Wharton de cordon ombilicaux (CSM-CO) humains aux CSM-MO suivant la même méthodologie que précédemment. Les CSM-CO expriment en culture une quantité d'ARNm de COL7A1 et de collagène VII supérieures aux CSM-MO et fibroblastes dermiques sains. Une injection unique ID de CSM-CO dans la peau EBDR équivalente greffée permet de rétablir une faible expression de collagène VII jusqu'à 4 mois après l'injection. Les CSM-CO sont détectées dans la peau équivalente jusqu'à 2 mois après l'injection. Ces données montrent que les CSM-CO ont une capacité moindre à restaurer l'expression du collagène VII à la JDE comparativement aux CSM-MO injectées dans le même modèle de xénogreffes EBDR. Ces résultats ouvrent la perspective d'une thérapie génique ex vivo utilisant des CSM-MO murines Col7a1-/-. Les souris Col7a1-/- reproduisent les lésions cutanées et muqueuses observées chez les patients EBDR. L'espérance de vie de ces animaux est très réduite. Les CSM-MO murines Col7a1-/- transduites en culture à l'aide d'un vecteur rétroviral SIN exprimant COL7A1 produisent en moyenne 30 fois plus de collagène VII que les CSM-MO murines WT. Des expériences in vivo sont nécessaires pour déterminer si l'injection de CSM-MO génétiquement corrigées ont le potentiel de traiter des lésions cutanées et muqueuses, pour définir la dose optimale et la durée de l'effet chez l'animal. Ceci constituerait une étape importante vers la clinique
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin disease caused by loss-of-function mutations in COL7A1 encoding type VII collagen. Type VII collagen forms anchoring fibrils which are essential structures for dermal-epidermal adherence. Patients with RDEB suffer since birth from skin and mucosal blistering and develop severe complications. The development of aggressive squamous cell carcinomas is the first cause of demise of these young patients. To date, there is no treatment. Mesenchymal stromal cells (MSC) are multipotent cells, isolated from adult tissue (bone marrow, adipose tissue) or perinatal tissue (umbilical cord). Previous works have shown that local and systemic injections of allogeneic bone marrow-derived MSC (BM-MSC) have a potential to reduce skin inflammation and to improve wound healing in RDEB patients. However, clinical improvement was transient and the mechanisms of action of BM-MSC in RDEB and also their survival after injection are still poorly understood. BM-MSC could act through immunomodulation, anti-fibrotic and angiogenic proprieties, paracrine effects leading to type VII collagen production in the host tissues and/or type VII collagen secretion by injected BM-MSC. The aim of our work was to study the therapeutic potential of MSC for RDEB in preclinical models. We first showed that BM-MSC produce COL7A1 mRNA and type VII collagen levels comparable to healthy dermal fibroblasts in culture. We then assessed the long-term capacity of human BM-MSC to survive, produce and deposit type VII collagen at the dermal-epidermal junction (DEJ) after local injection in human RDEB skin equivalents transplanted onto nude mice. In vivo intradermal (ID) injection of a single dose of human BM-MSC led to the production and deposition of human type VII collagen at the DEJ and allowed anchoring fibrils formation for at least six months post-injection. Injected human BM-MSC were found in the skin at least four months post-injection. These data show that intradermally injected human BM-MSC have the potential to improve dermal-epidermal adhesion of RDEB skin equivalents through sustained deposit of type VII collagen molecules and subsequent anchoring fibrils formation. We then compared the efficacy of human Umbilical Cord Wharton's Jelly-MSC (UC-MSC) with BM-MSC using the same methodology as previously described. UC-MSC showed in vitro a significantly higher amount of COL7A1 mRNA and type VII collagen compared to BM-MSC and healthy dermal fibroblasts in culture. ID injection of a single dose of UC-MSC in vivo led to the production and deposition of low levels of human type VII collagen at the DEJ for four months post-injection. Injected human UC-MSC were found in the skin two months post-injection. These data disclosed a lower efficacy of UC-MSC to restore collagen VII at the DEJ compared to BM-MSC injected in the same xenograft RDEB model. These data open the perspective of using gene-corrected BM-MSC from a Col7a1-/- RDEB murine model to restore normal dermal-epidermal adhesion. Col7a1-/- mice reproduce cutaneous and mucosal lesions observed in RDEB patients. The life expectancy of these animals is very short. We could show that transduction of Col7a1-/- murine BM-MSC in culture using a COL7A1-expressing SIN retroviral vector led to type VII collagen expression levels which were 30-fold higher on average than in BM-MSC from WT mice. In vivo data are required to determine whether the injection of gene-corrected BM-MSC has the potential to treat skin and mucosal lesions in RDEB mice and to define the optimal dose and duration of the effect in vivo. Restoration of type VII collagen expression and anchoring fibrils formation in Col7a1-/- mice would represent an important step towards clinical translation
Style APA, Harvard, Vancouver, ISO itp.
9

Kühl, Tobias Hans-Jürgen [Verfasser], i Leena [Akademischer Betreuer] Bruckner-Tuderman. "Mesenchymal stromal cell therapy for dystrophic epidermolysis bullosa". Freiburg : Universität, 2016. http://d-nb.info/1119452716/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

McGrath, John Alexander. "Abnormalities of wound healing and basement membrane zone composition in dystrophic epidermolysis bullosa". Thesis, King's College London (University of London), 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343791.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Recessive dystrophic epidermolysis bullosa"

1

Nguyen, Kim-Phuong. Epidermolysis Bullosa. Redaktorzy Erin S. Williams, Olutoyin A. Olutoye, Catherine P. Seipel i Titilopemi A. O. Aina. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190678333.003.0060.

Pełny tekst źródła
Streszczenie:
The anesthetic management of children with epidermolysis bullosa (EB) presents unique challenges to the pediatric anesthesiologist. Preoperative planning includes anticipation of a potentially difficult airway, focused protection of fragile skin and mucous membranes, and special consideration in the placement of standard monitors and intravenous access. Additionally, this chapter highlights the natural history and common procedures that may be performed in a child with EB; this will help prepare the anesthesiologist and the patient for a smooth anesthetic course. This chapter presents the case study of a 10-year-old girl with a medical history of recessive dystrophic EB, esophageal strictures, and poor nutritional status, who presents for esophageal dilation and percutaneous endoscopic gastrostomy tube placement.
Style APA, Harvard, Vancouver, ISO itp.
2

Sybert, Virginia P. Disorders of The Epidermis: Differentiation and Kinetics. Oxford University Press, 2012. http://dx.doi.org/10.1093/med/9780195397666.003.0002.

Pełny tekst źródła
Streszczenie:
Ichthyoses – Bullous Congenital Ichthyosiform Erythroderma – Continual Peeling Skin – Harlequin Fetus – Ichthyosis Bullosa of Siemens – Ichthyosis Hystrix – Ichthyosis Vulgaris – Lamellar Exfoliation of the Newborn – Lamellar Ichthyosis/Nonbullous Congenital Ichthyosiform Erythroderma – Netherton Syndrome – Restrictive Dermopathy – X-linked Recessive Ichthyosis – Erythrokeratodermas – Erythrokeratodermia Variabilis – Pityriasis Rubra Pilaris – Progressive Symmetric Erythrokeratoderma – Acrokeratoderma – Acrokeratoelastoidosis – Acrokeratosis Verruciformis (HOPF) – Hereditary Palmoplantar Keratodermas – Hereditary Palmoplantar Keratoderma with Deafness – Hereditary Palmoplantar Keratoderma Epidermolytic Hyperkeratosis – Hereditary Palmoplantar Keratoderma Howel-Evans – Hereditary Palmoplantar Keratoderma Olmsted – Hereditary Palmoplantar Keratoderma Punctate – Hereditary Palmoplantar Keratoderma Striata – Hereditary Palmoplantar Keratoderma Unna-Thost – Hereditary Palmoplantar Keratoderma Vohwinkel – Keratolytic Winter Erythema – Mal de Meleda – Papillon-Lefèvre – Scleroatrophic and Keratotic Dermatosis of the Limbs – Porokeratoses – Porokeratosis of Mibelli – Other Disorders of the Epidermis – Absence of Dermatoglyphics – Acanthosis Nigricans – Darier-White Disease – Hereditary Painful Callosities – Keratosis Follicularis Spinulosa Decalvans – Knuckle Pads – Kyrle/Flegel Disease – Ulerythema Ophryogenes – Syndromic Disorders – CHILD Syndrome – Chondrodysplasia Punctata – Ichthyosis with Hypogonadism – KID Syndrome – Neu-Laxova Syndrome – Neutral Lipid Storage Disease with Ichthyosis – Refsum Disease – Richner-Hanhart Syndrome – Sjögren-Larsson Syndrome – Cohesion – Epidermolysis Bullosa – Epidermolysis Bullosa Simplex Dowling-Meara – Epidermolysis Bullosa Simplex Generalized – Epidermolysis Bullosa Simplex Localized – Epidermolysis Bullosa Junctional Generalized – Epidermolysis Bullosa Junctional Generalized Atrophic Benign – Epidermolysis Bullosa Dystrophica Cockayne-Touraine – Epidermolysis Bullosa Dystrophica, Hallopeau-Siemens – Epidermolysis Bullosa Dystrophica Pretibial – Transient Bullous Dermolysis of the Newborn – Hailey-Hailey Disease
Style APA, Harvard, Vancouver, ISO itp.
3

Sybert, Virginia P. Disorders of the Epidermis. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190276478.003.0002.

Pełny tekst źródła
Streszczenie:
Chapter 2 covers Ichthyoses (Bullous Congenital Ichthyosiform Erythroderma, Harlequin Ichthyosis, Ichthyosis Bullosa of Siemens, Ichthyosis Hystrix, Ichthyosis Vulgaris, Lamellar Exfoliation of the Newborn, Lamellar Ichthyosis/Nonbullous Congenital Ichthyosiform Erythroderma, Netherton Syndrome, Peeling Skin Syndrome, Restrictive Dermopathy, and X-linked Recessive Ichthyosis), Erythrokeratodermas (Erythrokeratodermia Variabilis ET PROGESSIVA, and Pityriasis Rubra Pilaris), Acrokeratoderma (Acrokeratoelastoidosis, Acrokeratosis Verruciformis (HOPF)), Hereditary Palmoplantar Keratodermas (Hereditary Palmoplantar Keratoderma with Deafness, Hereditary Palmoplantar Keratoderma Epidermolytic Hyperkeratosis, Hereditary Palmoplantar Keratoderma Howel-Evans, Hereditary Palmoplantar Keratoderma Olmsted, Hereditary Palmoplantar Keratoderma Punctate, Hereditary Palmoplantar Keratoderma Striata, Hereditary Palmoplantar Keratoderma Unna-Thost, Hereditary Palmoplantar Keratoderma Vohwinkel, Keratolytic Winter Erythema, Mal de Meleda, Papillon-Lefèvre, Scleroatrophic and Keratotic Dermatosis of the Limbs), Porokeratoses (Porokeratosis of Mibelli), Other Disorders of the Epidermis (Absence of Dermatoglyphics, Acanthosis Nigricans, Darier-White Disease, Hereditary Painful Callosities, Keratosis Follicularis Spinulosa Decalvans, Knuckle Pads, Kyrle/Flegel Disease, Ulerythema Ophryogenes), Syndromic Disorders (CHILD Syndrome, Chondrodysplasia Punctata, Ichthyosis with Hypogonadism, KID Syndrome, Neu-Laxova Syndrome, Neutral Lipid Storage Disease with Ichthyosis, Refsum Disease, Richner-Hanhart Syndrome, Sjögren-Larsson Syndrome), Cohesion (Epidermolysis Bullosa, Epidermolysis Bullosa Simplex Dowling-Meara, Epidermolysis Bullosa Simplex Generalized, Epidermolysis Bullosa Simplex Localized, Epidermolysis Bullosa Junctional Generalized, Epidermolysis Bullosa Junctional Generalized Atrophic Benign, Epidermolysis Bullosa Dystrophica Cockayne-Touraine, Epidermolysis Bullosa Dystrophica, Hallopeau-Siemens, Epidermolysis Bullosa Dystrophica Pretibial, Transient Bullous Dermolysis of the Newborn, Hailey-Hailey Disease). Each condition is discussed in detail, including dermatologic features, associated anomalies, histopathology, basic defect, treatment, mode of inheritance, prenatal diagnosis, and differential diagnosis.
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Recessive dystrophic epidermolysis bullosa"

1

Briggaman, Robert A. "Recessive Dystrophic Epidermolysis Bullosa: A Clinical Overview". W Epidermolysis Bullosa, 135–51. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2914-8_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Voges, Elke, Annemarie Kronberger, Rosalind A. Grymes i Eugene A. Bauer. "Collagenase and Connective Tissue Remodeling in Recessive Dystrophic Epidermolysis Bullosa". W Epidermolysis Bullosa, 63–69. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2914-8_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Barron, Jason. "Vignette: Recessive Dystrophic Epidermolysis Bullosa (RDEB): Sibling Experiences". W Communications in Medical and Care Compunetics, 263–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38643-5_26.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Laimer, Martin, Johann W. Bauer i Helmut Hintner. "Dystrophic Epidermolysis Bullosa". W Blistering Diseases, 419–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45698-9_42.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Shwayder, Tor, Samantha L. Schneider, Devika Icecreamwala i Marla N. Jahnke. "Dystrophic Epidermolysis Bullosa". W Longitudinal Observation of Pediatric Dermatology Patients, 207–15. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-98101-7_27.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Lin, Andrew N., i D. Martin Carter. "Dominant Dystrophic Epidermolysis Bullosa: A Clinical Overview". W Epidermolysis Bullosa, 152–65. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2914-8_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Atherton, D. J. "Management of Dystrophic Epidermolysis Bullosa". W Pediatric Dermatology, 23–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71524-2_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Uitto, Jouni, i Angela M. Christiano. "The Dystrophic Forms of Epidermolysis Bullosa". W Principles of Molecular Medicine, 729–34. Totowa, NJ: Humana Press, 1998. http://dx.doi.org/10.1007/978-1-59259-726-0_78.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Dang, Ningning, i Dédée F. Murrell. "COL7A1 and Its Role in Dystrophic Epidermolysis Bullosa". W Blistering Diseases, 111–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45698-9_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Dang, Ningning, i Dédée F. Murrell. "Integrins A6 and B4 and Their Role in Junctional Epidermolysis Bullosa and Recessive Epidermolysis Bullosa Simplex". W Blistering Diseases, 85–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45698-9_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Recessive dystrophic epidermolysis bullosa"

1

Yerlett, Natalie, Gabriela Petrof, Katie Holsgrove i Anna Martinez. "68 Prevalence and treatment of Vitamin K deficiency in paediatric patients with recessive dystrophic epidermolysis bullosa- severe subtype (RDEB-S)". W GOSH Conference 2020 – Our People, Our Patients, Our Hospital. BMJ Publishing Group Ltd and Royal College of Paediatrics and Child Health, 2020. http://dx.doi.org/10.1136/archdischild-2020-gosh.68.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Recessive dystrophic epidermolysis bullosa"

1

Mahoney, My G., Ulrich Rodeck i Jouni Uitto. Molecular Characterization of Squamous Cell Carcinomas From Recessive Dystrophic Epidermolysis Bullosa. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2006. http://dx.doi.org/10.21236/ada463709.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Mahoney, My G., Ulrich Rodeck i Jouni Uitto. Molecular Characterization of Squamous Cell Carcinomas Derived from Recessive Dystrophic Epidermolysis Bullosa. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2005. http://dx.doi.org/10.21236/ada446877.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Mahoney, My G., Ulrich Rodeck i Jouni Uitto. Molecular Characterization of Squamous Cell Carcinomas Derived From Recessive Dystrophic Epidermolysis Bullosa. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2003. http://dx.doi.org/10.21236/ada419358.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Mahoney, My G., Ulrich Rodeck i Jouni Uitto. Molecular Characterization of Squamous Cell Carcinomas Derived from Recessive Dystropic Epidermolysis Bullosa. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2004. http://dx.doi.org/10.21236/ada427184.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii