Artykuły w czasopismach na temat „Recombinant vaccine”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Recombinant vaccine”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Jawad, J., R. W. Astuti, A. Haryanto, and N. Wijayanti. "Antibody response to Newcastle disease virus recombinant fusion protein in post-vaccinated laying hens." Journal of the Indonesian Tropical Animal Agriculture 48, no. 1 (2022): 20–27. http://dx.doi.org/10.14710/jitaa.48.1.20-27.
Pełny tekst źródłavan Diepen, Michiel, Rosamund Chapman, Nicola Douglass, et al. "Advancements in the Growth and Construction of Recombinant Lumpy Skin Disease Virus (LSDV) for Use as a Vaccine Vector." Vaccines 9, no. 10 (2021): 1131. http://dx.doi.org/10.3390/vaccines9101131.
Pełny tekst źródłaPrayugo, Armanda Dwi, Toto Subroto, and Wyanda Arnafia. "Efficacy of Hemagglutinin Gene of Highly Pathogenic Avian Influenza as a Vaccine Candidate in Poultry: A Review." World's Veterinary Journal 13 (March 25, 2023): 26–31. http://dx.doi.org/10.54203/scil.2023.wvj3.
Pełny tekst źródłaMarra, Yasmin, and Fawziah Lalji. "Prevention of Herpes Zoster: A Focus on the Effectiveness and Safety of Herpes Zoster Vaccines." Viruses 14, no. 12 (2022): 2667. http://dx.doi.org/10.3390/v14122667.
Pełny tekst źródłaErtl, H. C., and Z. Xiang. "Novel vaccine approaches." Journal of Immunology 156, no. 10 (1996): 3579–82. http://dx.doi.org/10.4049/jimmunol.156.10.3579.
Pełny tekst źródłaWu, Xiao-Xin, Hang-Ping Yao, Nan-Ping Wu, et al. "Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease." Cellular Physiology and Biochemistry 37, no. 5 (2015): 1641–58. http://dx.doi.org/10.1159/000438531.
Pełny tekst źródłaKoeberling, Oliver, Isabel Delany, and Dan M. Granoff. "A Critical Threshold of Meningococcal Factor H Binding Protein Expression Is Required for Increased Breadth of Protective Antibodies Elicited by Native Outer Membrane Vesicle Vaccines." Clinical and Vaccine Immunology 18, no. 5 (2011): 736–42. http://dx.doi.org/10.1128/cvi.00542-10.
Pełny tekst źródłaHudu, Shuaibu Abdullahi, Saadatu Haruna Shinkafi, and Shuaibu Umar. "AN OVERVIEW OF RECOMBINANT VACCINE TECHNOLOGY, ADJUVANTS AND VACCINE DELIVERY METHODS." International Journal of Pharmacy and Pharmaceutical Sciences 8, no. 11 (2016): 19. http://dx.doi.org/10.22159/ijpps.2016v8i11.14311.
Pełny tekst źródłaDewidar, Abdelmonem A. A., Walid H. Kilany, Azza A. El-Sawah, et al. "Genotype VII.1.1-Based Newcastle Disease Virus Vaccines Afford Better Protection against Field Isolates in Commercial Broiler Chickens." Animals 12, no. 13 (2022): 1696. http://dx.doi.org/10.3390/ani12131696.
Pełny tekst źródłaBaldo, Aline, Amaya Leunda, Nicolas Willemarck, and Katia Pauwels. "Environmental Risk Assessment of Recombinant Viral Vector Vaccines against SARS-Cov-2." Vaccines 9, no. 5 (2021): 453. http://dx.doi.org/10.3390/vaccines9050453.
Pełny tekst źródłaPark, Seong Yeon. "What is Different about Recombinant Herpes Zoster Vaccine?" Korean Journal of Medicine 99, no. 4 (2024): 180–88. http://dx.doi.org/10.3904/kjm.2024.99.4.180.
Pełny tekst źródłaTrujillo, Edgar, Abel Ramos-Vega, Elizabeth Monreal-Escalante, Consuelo Almazán, and Carlos Angulo. "Overview of Recombinant Tick Vaccines and Perspectives on the Use of Plant-Made Vaccines to Control Ticks of Veterinary Importance." Vaccines 12, no. 10 (2024): 1178. http://dx.doi.org/10.3390/vaccines12101178.
Pełny tekst źródłaKumar, Vivek, Anuj Verma, Riddhi Singh, et al. "Recombinant vaccines: Current updates and future prospects." Asian Pacific Journal of Tropical Medicine 17, no. 8 (2024): 338–50. http://dx.doi.org/10.4103/apjtm.apjtm_854_23.
Pełny tekst źródłaMuravyova, N. V., and B. S. Belov. "Vaccination against Herpes zoster in patients with immune-mediated inflammatory rheumatic diseases: new data." Modern Rheumatology Journal 18, no. 4 (2024): 115–20. http://dx.doi.org/10.14412/1996-7012-2024-4-115-120.
Pełny tekst źródłaYan, Lin, Jin Qiu, Jianbo Chen, et al. "Selected prfA* Mutations in Recombinant Attenuated Listeria monocytogenes Strains Augment Expression of Foreign Immunogens and Enhance Vaccine-Elicited Humoral and Cellular Immune Responses." Infection and Immunity 76, no. 8 (2008): 3439–50. http://dx.doi.org/10.1128/iai.00245-08.
Pełny tekst źródłaStovba, L. F., N. K. Chernikova, A. L. Khmelev, and S. V. Borisevich. "Anti-Vector Immune Response Formed after Immunization with Recombinant Vaccines Based on the Vaccinia Virus, MVA Strain." Problems of Particularly Dangerous Infections, no. 1 (April 7, 2025): 105–11. https://doi.org/10.21055/0370-1069-2025-1-105-111.
Pełny tekst źródłaShollenberger, Lisa, Rafaella Grenfell, E. Farah Samli, and Donald Harn. "Vaccine self-assembling immune matrix (VacSIM) is a non-viral delivery platform that augments responses to recombinant protein vaccines (VAC6P.940)." Journal of Immunology 192, no. 1_Supplement (2014): 140.1. http://dx.doi.org/10.4049/jimmunol.192.supp.140.1.
Pełny tekst źródłaHongying, Fan, Wu Xianbo, Yu Fang, Bai Yang, and Long Beiguo. "Oral Immunization with Recombinant Lactobacillus acidophilus Expressing the Adhesin Hp0410 of Helicobacter pylori Induces Mucosal and Systemic Immune Responses." Clinical and Vaccine Immunology 21, no. 2 (2013): 126–32. http://dx.doi.org/10.1128/cvi.00434-13.
Pełny tekst źródłaChang, Pengxiang, Faisal Ameen, Joshua E. Sealy, et al. "Application of HDR-CRISPR/Cas9 and Erythrocyte Binding for Rapid Generation of Recombinant Turkey Herpesvirus-Vectored Avian Influenza Virus Vaccines." Vaccines 7, no. 4 (2019): 192. http://dx.doi.org/10.3390/vaccines7040192.
Pełny tekst źródłaMcAllister, Andrés, Alejandra E. Arbetman, Stefanie Mandl, Claudia Peña-Rossi, and Raul Andino. "Recombinant Yellow Fever Viruses Are Effective Therapeutic Vaccines for Treatment of Murine Experimental Solid Tumors and Pulmonary Metastases." Journal of Virology 74, no. 19 (2000): 9197–205. http://dx.doi.org/10.1128/jvi.74.19.9197-9205.2000.
Pełny tekst źródłaSaito, Takeshi, Rachel A. Reyna, Satoshi Taniguchi, Kirsten Littlefield, Slobodan Paessler, and Junki Maruyama. "Vaccine Candidates against Arenavirus Infections." Vaccines 11, no. 3 (2023): 635. http://dx.doi.org/10.3390/vaccines11030635.
Pełny tekst źródłaDAČIĆ, M., R. RESANOVIC, Z. RASIC, M. VALCIC, A. MILOVANOVIC, and M. VELHNER. "Efficacy of recombinant VAXXITEK HVT-IBDv vaccine against very virulent Infectious bursal disease virus (vvIBDv) challenge in layer chicks: A pilot study." Journal of the Hellenic Veterinary Medical Society 69, no. 1 (2018): 823. http://dx.doi.org/10.12681/jhvms.16434.
Pełny tekst źródłaPearl, Karlyn K., Ana A. Ortiz, and William Pearl. "Efficacy of Immunization with a Combination of Serum and Recombinant Hepatitis B Vaccines." Infection Control & Hospital Epidemiology 14, no. 8 (1993): 476–78. http://dx.doi.org/10.1086/646783.
Pełny tekst źródłaLevin, Myron J., Neda Al Rawashdh, Liliane Mofor, et al. "A Clinical and Economic Comparison of Cell-Based Versus Recombinant Influenza Vaccines in Adults 18–64 Years in the United States." Vaccines 12, no. 11 (2024): 1217. http://dx.doi.org/10.3390/vaccines12111217.
Pełny tekst źródłaWeaver, Eric A. "Dose Effects of Recombinant Adenovirus Immunization in Rodents." Vaccines 7, no. 4 (2019): 144. http://dx.doi.org/10.3390/vaccines7040144.
Pełny tekst źródłaBerg, Michael G., Robert J. Adams, Ratish Gambhira, et al. "Immune Responses in Macaques to a Prototype Recombinant Adenovirus Live Oral Human Papillomavirus 16 Vaccine." Clinical and Vaccine Immunology 21, no. 9 (2014): 1224–31. http://dx.doi.org/10.1128/cvi.00197-14.
Pełny tekst źródłaCuccui, Jon, Rebecca M. Thomas, Madeleine G. Moule, et al. "Exploitation of bacterial N -linked glycosylation to develop a novel recombinant glycoconjugate vaccine against Francisella tularensis." Open Biology 3, no. 5 (2013): 130002. http://dx.doi.org/10.1098/rsob.130002.
Pełny tekst źródłaShahriari, Amir Ghaffar, and Maziar Habibi-Pirkoohi. "Plant-Based Recombinant Vaccine: Fact or Fiction?" Galen Medical Journal 6, no. 4 (2017): 268–80. http://dx.doi.org/10.31661/gmj.v6i4.792.
Pełny tekst źródłaSarmadi, Mahdieh, Azam Gheibi, Hossein Khanahmad, et al. "Design and Characterization of a Recombinant Brucella abortus RB51 Vaccine That Elicits Enhanced T Cell-Mediated Immune Response." Vaccines 10, no. 3 (2022): 388. http://dx.doi.org/10.3390/vaccines10030388.
Pełny tekst źródłaSchlom, Jeffrey. "Recombinant cancer vaccines and new vaccine targets." Expert Review of Vaccines 12, no. 10 (2013): 1121–24. http://dx.doi.org/10.1586/14760584.2013.836913.
Pełny tekst źródłaStover, C. Kendall. "Recombinant vaccine delivery systems and encoded vaccines." Current Opinion in Immunology 6, no. 4 (1994): 568–71. http://dx.doi.org/10.1016/0952-7915(94)90143-0.
Pełny tekst źródłaTang, Na, Yaoyao Zhang, Yashar Sadigh, et al. "Generation of A Triple Insert Live Avian Herpesvirus Vectored Vaccine Using CRISPR/Cas9-Based Gene Editing." Vaccines 8, no. 1 (2020): 97. http://dx.doi.org/10.3390/vaccines8010097.
Pełny tekst źródłaBarouch, Dan H., Paul F. McKay, Shawn M. Sumida, et al. "Plasmid Chemokines and Colony-Stimulating Factors Enhance the Immunogenicity of DNA Priming-Viral Vector Boosting Human Immunodeficiency Virus Type 1 Vaccines." Journal of Virology 77, no. 16 (2003): 8729–35. http://dx.doi.org/10.1128/jvi.77.16.8729-8735.2003.
Pełny tekst źródłaKumar, Pawan, Tamer A. Sharafeldin, Rahul Kumar, et al. "Development of a Recombinant Pichinde Virus-Vectored Vaccine against Turkey Arthritis Reovirus and Its Immunological Response Characterization in Vaccinated Animals." Pathogens 10, no. 2 (2021): 197. http://dx.doi.org/10.3390/pathogens10020197.
Pełny tekst źródłaPastoret, P. P., D. Boulanger, and B. Brochier. "Field trials of a recombinant rabies vaccine." Parasitology 110, S1 (1995): S37—S42. http://dx.doi.org/10.1017/s0031182000001475.
Pełny tekst źródłaTemchura, Vladimir, Jannik T. Wagner, and Dominik Damm. "Immunogenicity of Recombinant Lipid-Based Nanoparticle Vaccines: Danger Signal vs. Helping Hand." Pharmaceutics 16, no. 1 (2023): 24. http://dx.doi.org/10.3390/pharmaceutics16010024.
Pełny tekst źródłaRizqoh, Debie. "Genetic Engineering Technique in Virus-Like Particle Vaccine Construction." Jurnal Kesehatan Masyarakat Indonesia 16, no. 4 (2021): 203. http://dx.doi.org/10.26714/jkmi.16.4.2021.203-211.
Pełny tekst źródłaOurmanov, Ilnour, Charles R. Brown, Bernard Moss, et al. "Comparative Efficacy of Recombinant Modified Vaccinia Virus Ankara Expressing Simian Immunodeficiency Virus (SIV) Gag-Pol and/or Env in Macaques Challenged with Pathogenic SIV." Journal of Virology 74, no. 6 (2000): 2740–51. http://dx.doi.org/10.1128/jvi.74.6.2740-2751.2000.
Pełny tekst źródłaWilladsen, P., P. Bird, G. S. Cobon, and J. Hungerford. "Commercialisation of a recombinant vaccine againstBoophilus microplus." Parasitology 110, S1 (1995): S43—S50. http://dx.doi.org/10.1017/s0031182000001487.
Pełny tekst źródłaTseng, Ta-Yuan, Yee-Chen Liu, Yu-Chen Hsu, et al. "Preparation of Chicken Anemia Virus (CAV) Virus-Like Particles and Chicken Interleukin-12 for Vaccine Development Using a Baculovirus Expression System." Pathogens 8, no. 4 (2019): 262. http://dx.doi.org/10.3390/pathogens8040262.
Pełny tekst źródłaMa, Haoyuan, Haowen Xue, Jingfeng Fu, Yanhao Song, Kunru Zhu, and Xu Gao. "Recombination of Goose Parvovirus VP3 Gene and Goose Interferon Ɣ Gene from Fowlpox Virus Immune Protection and Its Mechanism." BIO Web of Conferences 60 (2023): 01010. http://dx.doi.org/10.1051/bioconf/20236001010.
Pełny tekst źródłaRezende, A. F. S., A. A. Brum, F. S. B. Bezerra, et al. "Assessment of the acid phosphatase CP01850 from Corynebacterium pseudotuberculosis in DNA and subunit vaccine formulations against caseous lymphadenitis." Arquivo Brasileiro de Medicina Veterinária e Zootecnia 72, no. 1 (2020): 199–207. http://dx.doi.org/10.1590/1678-4162-10790.
Pełny tekst źródłaYousefi, A., Fatemeh Fotouhi, S. Hosseinzadeh, et al. "Expression of Antigenic Determinants of the Haemagglutinin Large Subunit of Novel Influenza Virus in Insect Cells." Folia Biologica 58, no. 4 (2012): 151–56. http://dx.doi.org/10.14712/fb2012058040151.
Pełny tekst źródłaZhang, Haiyan, Arun Sridhar, Natacha Delrez, et al. "Development Using Bioluminescence Imaging of a Recombinant Anguillid Herpesvirus 1 Vaccine Candidate Associated with Normal Replication In Vitro but Abortive Infection In Vivo." Vaccines 12, no. 12 (2024): 1423. https://doi.org/10.3390/vaccines12121423.
Pełny tekst źródłaShehata, Mahmoud M., Ahmed Kandeil, Ahmed Mostafa, et al. "A Recombinant Influenza A/H1N1 Carrying A Short Immunogenic Peptide of MERS-CoV as Bivalent Vaccine in BALB/c Mice." Pathogens 8, no. 4 (2019): 281. http://dx.doi.org/10.3390/pathogens8040281.
Pełny tekst źródłaPayton, C. D., D. A. Scarisbrick, S. Sikotra, and A. J. E. Flower. "Vaccination against hepatitis B: comparison of intradermal and intramuscular administration of plasma derived and recombinant vaccines." Epidemiology and Infection 110, no. 1 (1993): 177–80. http://dx.doi.org/10.1017/s0950268800050792.
Pełny tekst źródłaKOŠOROK, Stane, and Miran KASTELIC. "Antibody response following sow vaccination using cell and recombinant vaccines, single and multiple application." Acta agriculturae Slovenica, no. 2 (September 15, 2008): 167–71. http://dx.doi.org/10.14720/aas-s.2008.2.19243.
Pełny tekst źródłaCuervo, Nancy Stella, Sophie Guillot, Natalia Romanenkova, et al. "Genomic Features of Intertypic Recombinant Sabin Poliovirus Strains Excreted by Primary Vaccinees." Journal of Virology 75, no. 13 (2001): 5740–51. http://dx.doi.org/10.1128/jvi.75.13.5740-5751.2001.
Pełny tekst źródłaZhang, Guihua, Yang Fu, Yu’an Li, Quan Li, Shifeng Wang, and Huoying Shi. "Oral Immunization with Attenuated Salmonella Choleraesuis Expressing the FedF Antigens Protects Mice against the Shiga-Toxin-Producing Escherichia coli Challenge." Biomolecules 13, no. 12 (2023): 1726. http://dx.doi.org/10.3390/biom13121726.
Pełny tekst źródłaHusseiny, Mohamed I., and Michael Hensel. "Rapid Method for the Construction of Salmonella enterica Serovar Typhimurium Vaccine Carrier Strains." Infection and Immunity 73, no. 3 (2005): 1598–605. http://dx.doi.org/10.1128/iai.73.3.1598-1605.2005.
Pełny tekst źródła