Artykuły w czasopismach na temat „Reentrant Cavity”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Reentrant Cavity”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Migliuolo, M., and T. G. Castner. "Novel tunable reentrant microwave cavity." Review of Scientific Instruments 59, no. 2 (1988): 388–90. http://dx.doi.org/10.1063/1.1140216.
Pełny tekst źródłaPaoloni, Claudio. "Periodically Allocated Reentrant Cavity Klystron." IEEE Transactions on Electron Devices 61, no. 6 (2014): 1687–91. http://dx.doi.org/10.1109/ted.2014.2301813.
Pełny tekst źródłaUhlman, James S. "A Note on the Development of a Nonlinear Axisymmetric Reentrant Jet Cavitation Model." Journal of Ship Research 50, no. 03 (2006): 259–67. http://dx.doi.org/10.5957/jsr.2006.50.3.259.
Pełny tekst źródłaSheng-Lung Huang, Ying-Hui Chen, Pi-Ling Huang, Jui-Yun Yi, and Huy-Zu Cheng. "Multi-reentrant nonplanar ring laser cavity." IEEE Journal of Quantum Electronics 38, no. 10 (2002): 1301–8. http://dx.doi.org/10.1109/jqe.2002.802955.
Pełny tekst źródłaCarvalho, N. C., Y. Fan, J.-M. Le Floch, and M. E. Tobar. "Piezoelectric voltage coupled reentrant cavity resonator." Review of Scientific Instruments 85, no. 10 (2014): 104705. http://dx.doi.org/10.1063/1.4897482.
Pełny tekst źródłaTiwari, Ashish Kumar, and P. R. Hannurkar. "Electromagnetic Analysis of Reentrant Klystron Cavity." Journal of Infrared, Millimeter, and Terahertz Waves 31, no. 10 (2010): 1221–24. http://dx.doi.org/10.1007/s10762-010-9701-5.
Pełny tekst źródłaBansiwal, Ashok, Sushil Raina, K. J. Vinoy, and Subrata Kumar Datta. "Effect of Beam tunnels on Resonant Frequency of Cylindrical Reentrant Cavity." Defence Science Journal 71, no. 03 (2021): 332–36. http://dx.doi.org/10.14429/dsj.71.16814.
Pełny tekst źródłaNouroozi, M., M. Pasandidehfard, and M. H. Djavareshkian. "Simulation of Partial and Supercavitating Flows around Axisymmetric and Quasi-3D Bodies by Boundary Element Method Using Simple and Reentrant Jet Models at the Closure Zone of Cavity." Mathematical Problems in Engineering 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/1593849.
Pełny tekst źródłaSeo, Dongjin, Alex M. Schrader, Szu-Ying Chen, et al. "Rates of cavity filling by liquids." Proceedings of the National Academy of Sciences 115, no. 32 (2018): 8070–75. http://dx.doi.org/10.1073/pnas.1804437115.
Pełny tekst źródłaFan, Yaohui, Zhengyu Zhang, Natalia C. Carvalho, Jean-Michel Le Floch, Qingxiao Shan, and Michael E. Tobar. "Investigation of Higher Order Reentrant Modes of a Cylindrical Reentrant-Ring Cavity Resonator." IEEE Transactions on Microwave Theory and Techniques 62, no. 8 (2014): 1657–62. http://dx.doi.org/10.1109/tmtt.2014.2331625.
Pełny tekst źródłaBrown, M. R., T. E. Sheridan, and M. A. Hayes. "Reentrant cavity as a low‐power plasma source." Review of Scientific Instruments 57, no. 12 (1986): 2957–60. http://dx.doi.org/10.1063/1.1139023.
Pełny tekst źródłaCarter, R. G., Jinjun Feng, and U. Becker. "Calculation of the Properties of Reentrant Cylindrical Cavity Resonators." IEEE Transactions on Microwave Theory and Techniques 55, no. 12 (2007): 2531–38. http://dx.doi.org/10.1109/tmtt.2007.909750.
Pełny tekst źródłaBansiwal, Ashok, Sushil Raina, K. J. Vinoy, and S. K. Datta. "A Broadband Rectangular Reentrant Cavity for Multiple-Beam Klystron." IEEE Transactions on Electron Devices 66, no. 7 (2019): 3168–70. http://dx.doi.org/10.1109/ted.2019.2916222.
Pełny tekst źródłaHuang, Pi-Ling, Chun-Jen Weng, Hung-T'sang Tuan, Shen-Chuang Pei, Yung-Hsin Chang, and Sheng-Lung Huang. "Polarization Analysis of a Nonplanar Reentrant Ring Laser Cavity." Japanese Journal of Applied Physics 42, Part 1, No. 6A (2003): 3403–8. http://dx.doi.org/10.1143/jjap.42.3403.
Pełny tekst źródłaTuan, Hung-Tsang, and Sheng-Lung Huang. "Analysis of reentrant two-mirror nonplanar ring laser cavity." Journal of the Optical Society of America A 22, no. 11 (2005): 2476. http://dx.doi.org/10.1364/josaa.22.002476.
Pełny tekst źródłade Paula, L. A. N., M. Goryachev, and M. E. Tobar. "Experiments match simulations in a multiple post reentrant cavity." Review of Scientific Instruments 88, no. 12 (2017): 125104. http://dx.doi.org/10.1063/1.4997626.
Pełny tekst źródłaIshihara, Y., and N. Wadamori. "Localized heating characteristics of hyperthermia using a reentrant cavity." Journal of Medical Engineering & Technology 32, no. 5 (2008): 348–57. http://dx.doi.org/10.1080/03091900802058953.
Pełny tekst źródłaLi, XiaoJing, ShunQi Zheng, BaoRong Zhao, XiWen Zhang, and WeiZhong Tang. "Design and Numerical Simulation of Novel Reentrant Microwave Cavity." Physics Procedia 22 (2011): 101–6. http://dx.doi.org/10.1016/j.phpro.2011.11.016.
Pełny tekst źródłaOnodera, T., and T. Hoashi. "Generalized representation of beam coupling coefficient in ungridded reentrant cavity." IEEE Transactions on Electron Devices 45, no. 8 (1998): 1858–60. http://dx.doi.org/10.1109/16.704395.
Pełny tekst źródłaLu, Fei, Yanjie Guo, Qiulin Tan, et al. "Highly Sensitive Reentrant Cavity-Microstrip Patch Antenna Integrated Wireless Passive Pressure Sensor for High Temperature Applications." Journal of Sensors 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/3417562.
Pełny tekst źródłaSrinivasan, Sudharsan, and Pierre-André Duperrex. "Dielectric-Filled Reentrant Cavity Resonator as a Low-Intensity Proton Beam Diagnostic." Instruments 2, no. 4 (2018): 24. http://dx.doi.org/10.3390/instruments2040024.
Pełny tekst źródłaMuzhaimey, Syarif Syahrul Syazwan, Nik Nazri Nik Ghazali, Mohd Zamri Zainon, et al. "Numerical Investigation of Heat Transfer Enhancement in a Microchannel with Conical-Shaped Reentrant Cavity." Mathematics 10, no. 22 (2022): 4330. http://dx.doi.org/10.3390/math10224330.
Pełny tekst źródłaWang, Minwen, Xin Zhuo, Mingtong Zhao, Mengtong Qiu, Wei Chen, and Zhongming Wang. "Design and prototype test of a high-sensitivity reentrant-cavity based Schottky pickup." Review of Scientific Instruments 94, no. 3 (2023): 033301. http://dx.doi.org/10.1063/5.0134286.
Pełny tekst źródłaXia, Z. X., Y. J. Cheng, and Y. Fan. "Frequency-reconfigurable TM010-mode reentrant cylindrical cavity for microwave material processing." Journal of Electromagnetic Waves and Applications 27, no. 5 (2013): 605–14. http://dx.doi.org/10.1080/09205071.2013.758224.
Pełny tekst źródłaKedzierski, M. A., and L. Lin. "Pool boiling of HFO-1336mzz(Z) on a reentrant cavity surface." International Journal of Refrigeration 104 (August 2019): 476–83. http://dx.doi.org/10.1016/j.ijrefrig.2019.02.022.
Pełny tekst źródłaIshihara, Y., Y. Kameyama, Y. Minegishi, and N. Wadamori. "Heating applicator based on reentrant cavity with optimized local heating characteristics." International Journal of Hyperthermia 24, no. 8 (2008): 694–704. http://dx.doi.org/10.1080/02656730802117064.
Pełny tekst źródłaBansiwal, Ashok, Sushil Raina, K. J. Vinoy, and Subrata Kumar Datta. "A Post-Loaded Rectangular Reentrant Cavity for Broadband Multiple-Beam Klystron." IEEE Electron Device Letters 41, no. 6 (2020): 916–19. http://dx.doi.org/10.1109/led.2020.2989103.
Pełny tekst źródłaBeck, B. L., K. A. Jenkins, and J. R. Fitzsimmons. "Geometry comparisons of an 11-T coaxial reentrant cavity (ReCav) coil." Concepts in Magnetic Resonance 18B, no. 1 (2003): 24–27. http://dx.doi.org/10.1002/cmr.b.10074.
Pełny tekst źródłaZhang, Guang Jian, and Wei Dong Shi. "Numerical Modeling of Unsteady Cloud Cavitation around a Clark-Y Hydrofoil Based on Modified SST Model." Applied Mechanics and Materials 448-453 (October 2013): 3340–43. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.3340.
Pełny tekst źródłaGoryashko, V. A., M. Jobs, L. H. Duc, J. Ericsson, and R. Ruber. "12-Way 100 kW Reentrant Cavity-Based Power Combiner With Doorknob Couplers." IEEE Microwave and Wireless Components Letters 28, no. 2 (2018): 111–13. http://dx.doi.org/10.1109/lmwc.2017.2780619.
Pełny tekst źródłaSaimi, Motohiro, Eiji Shiohama, and Tsutomu Kobayashi. "A study of electrodeless microwave HID lamps with a reentrant-type cavity." JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 86, Appendix (2002): 84. http://dx.doi.org/10.2150/jieij1980.86.appendix_84.
Pełny tekst źródłaZeng, Jian, Lang Lin, Yong Tang, Yalong Sun, and Wei Yuan. "Fabrication and capillary characterization of micro-grooved wicks with reentrant cavity array." International Journal of Heat and Mass Transfer 104 (January 2017): 918–29. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.09.007.
Pełny tekst źródłaLe, Q., J. P. Franc, and J. M. Michel. "Partial Cavities: Global Behavior and Mean Pressure Distribution." Journal of Fluids Engineering 115, no. 2 (1993): 243–48. http://dx.doi.org/10.1115/1.2910131.
Pełny tekst źródłaMa, Jixu, Yukang Chen, and Jie Huang. "A Microwave Displacement Sensor Based on SIW Double Reentrant Cavity with Ring Gaps." Progress In Electromagnetics Research M 113 (2022): 35–45. http://dx.doi.org/10.2528/pierm22050102.
Pełny tekst źródłaIshihara, Yasutoshi, Yuya Gotanda, Naoki Wadamori, and Jin-ichi Matsuda. "Hyperthermia applicator based on a reentrant cavity for localized head and neck tumors." Review of Scientific Instruments 78, no. 2 (2007): 024301. http://dx.doi.org/10.1063/1.2437203.
Pełny tekst źródłaHuang, Pi-Ling, Chun-Ren Weng, Huy-Zu Cheng, and Sheng-Lung Huang. "A Passively Q-Switched Laser Constructed by a Two-Mirror Reentrant Ring Cavity." Japanese Journal of Applied Physics 40, Part 2, No. 5B (2001): L508—L510. http://dx.doi.org/10.1143/jjap.40.l508.
Pełny tekst źródłaGu, Wei, Yousheng He, and Tianqun Hu. "Transcritical Patterns of Cavitating Flow and Trends of Acoustic Level." Journal of Fluids Engineering 123, no. 4 (2001): 850–56. http://dx.doi.org/10.1115/1.1412233.
Pełny tekst źródłaLiao, Dong, Yinchuang Yang, and Huihe Qiu. "Droplet impact dynamics and heat transfer on nanostructured doubly reentrant cavity under freezing temperature." Physics of Fluids 33, no. 5 (2021): 052005. http://dx.doi.org/10.1063/5.0050400.
Pełny tekst źródłaKazuma, Hiroyuki, Yoshiaki Saitoh, Michio Miyakawa, and Jun'ichi Hori. "Heating Characteristics with Reentrant Resonant-Cavity Applicator. An Experimental Study with Small Phantom Model." Thermal Medicine(Japanese Journal of Hyperthermic Oncology) 12, no. 4 (1996): 401–9. http://dx.doi.org/10.3191/thermalmedicine.12.401.
Pełny tekst źródłaWang, Yonghui, Zhixian Ma, and Jili Zhang. "Precise determination of R134a boiling bundle effect on a column of reentrant cavity tubes." Applied Thermal Engineering 199 (November 2021): 117612. http://dx.doi.org/10.1016/j.applthermaleng.2021.117612.
Pełny tekst źródłaYasui, Toshiaki, Hirokazu Tahara, and Takao Yoshikawa. "Plasma Generation and Beam Extraction on Reentrant-Cavity-Type Electron Cyclotron Resonance Ion Source." Japanese Journal of Applied Physics 33, Part 1, No. 8 (1994): 4787–92. http://dx.doi.org/10.1143/jjap.33.4787.
Pełny tekst źródłaGoyal, A., R. C. Jaeger, S. H. Bhavnani, et al. "Formation of silicon reentrant cavity heat sinks using anisotropic etching and direct wafer bonding." IEEE Electron Device Letters 14, no. 1 (1993): 29–32. http://dx.doi.org/10.1109/55.215090.
Pełny tekst źródłaKedzierski, M. A., and L. Lin. "Pool boiling of R515A, R1234ze(E), and R1233zd(E) on a reentrant cavity surface." International Journal of Heat and Mass Transfer 161 (November 2020): 120252. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120252.
Pełny tekst źródłaKedzierski, M. A. "Effect of concentration on R134a/Al2O3 nanolubricant mixture boiling on a reentrant cavity surface." International Journal of Refrigeration 49 (January 2015): 36–48. http://dx.doi.org/10.1016/j.ijrefrig.2014.09.012.
Pełny tekst źródłaWang, Yonghui, Jili Zhang, and Zhixian Ma. "Experimental study of pool boiling on a novel reentrant cavity tube surface with R134a." International Journal of Heat and Mass Transfer 135 (June 2019): 124–30. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.01.128.
Pełny tekst źródłaJi, Wen-Tao, Chuang-Yao Zhao, Ding-Cai Zhang, et al. "Pool boiling heat transfer of R134a outside reentrant cavity tubes at higher heat flux." Applied Thermal Engineering 127 (December 2017): 1364–71. http://dx.doi.org/10.1016/j.applthermaleng.2017.08.130.
Pełny tekst źródłaDuncan, J. H., and S. Zhang. "On the interaction of a collapsing cavity and a compliant wall." Journal of Fluid Mechanics 226 (May 1991): 401–23. http://dx.doi.org/10.1017/s0022112091002446.
Pełny tekst źródłaBansiwal, Ashok, Sushil Raina, K. J. Vinoy, and Subrata Kumar Datta. "Equivalent Circuit Analysis of a Rectangular Double-Reentrant Cavity With Circular Cylindrical Ferrule for Klystrons." IEEE Transactions on Electron Devices 66, no. 11 (2019): 4952–56. http://dx.doi.org/10.1109/ted.2019.2942778.
Pełny tekst źródłaZhang, Shiwei, Lang Lin, Gong Chen, et al. "Experimental study on the capillary performance of aluminum micro-grooved wicks with reentrant cavity array." International Journal of Heat and Mass Transfer 139 (August 2019): 917–27. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.05.091.
Pełny tekst źródłaKashiwa, T., M. Miyakawa, T. Tsukamoto, and Y. Kanai. "Resonant frequency analysis of reentrant resonant cavity applicator by using FEM and FD-TD method." IEEE Transactions on Magnetics 36, no. 4 (2000): 1750–53. http://dx.doi.org/10.1109/20.877782.
Pełny tekst źródła