Gotowa bibliografia na temat „Regular projections”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Regular projections”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Regular projections"

1

Takimura, Yusuke. "Regular projections of the knot 62." Journal of Knot Theory and Its Ramifications 27, no. 14 (2018): 1850081. http://dx.doi.org/10.1142/s0218216518500815.

Pełny tekst źródła
Streszczenie:
A knot [Formula: see text] is a minor of a knot [Formula: see text] if any regular projection of [Formula: see text] is also a regular projection of [Formula: see text]. This defines a pre-ordering on the set of all knots. For each knot of five or less crossings, the set of all regular projections of it is determined by Taniyama [A partial order of knots, Tokyo J. Math. 12(1) (1989) 205–229]. Thus, the pre-ordering is determined up to five crossing knots. In this paper, we determine the set of all regular projections of the knot [Formula: see text].
Style APA, Harvard, Vancouver, ISO itp.
2

Wang, Xingchang, Tao Yu, Kwokwai Chung, Krzysztof Gdawiec, and Peichang Ouyang. "Stereographic Visualization of 5-Dimensional Regular Polytopes." Symmetry 11, no. 3 (2019): 391. http://dx.doi.org/10.3390/sym11030391.

Pełny tekst źródła
Streszczenie:
Regular polytopes (RPs) are an extension of 2D (two-dimensional) regular polygons and 3D regular polyhedra in n-dimensional ( n ≥ 4 ) space. The high abstraction and perfect symmetry are their most prominent features. The traditional projections only show vertex and edge information. Although such projections can preserve the highest degree of symmetry of the RPs, they can not transmit their metric or topological information. Based on the generalized stereographic projection, this paper establishes visualization methods for 5D RPs, which can preserve symmetries and convey general metric and topological data. It is a general strategy that can be extended to visualize n-dimensional RPs ( n > 5 ).
Style APA, Harvard, Vancouver, ISO itp.
3

Chalmers, Bruce L., and Boris Shekhtman. "Minimal projections and absolute projection constants for regular polyhedral spaces." Proceedings of the American Mathematical Society 95, no. 3 (1985): 449. http://dx.doi.org/10.1090/s0002-9939-1985-0806085-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Hept, Kerstin, and Thorsten Theobald. "Tropical bases by regular projections." Proceedings of the American Mathematical Society 137, no. 07 (2009): 2233–41. http://dx.doi.org/10.1090/s0002-9939-09-09843-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Affentranger, Fernando, and Rolf Schneider. "Random projections of regular simplices." Discrete & Computational Geometry 7, no. 3 (1992): 219–26. http://dx.doi.org/10.1007/bf02187839.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

B�r�czky, Jr., K., and M. Henk. "Random projections of regular polytopes." Archiv der Mathematik 73, no. 6 (1999): 465–73. http://dx.doi.org/10.1007/s000130050424.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

TANIYAMA, KOUKI, and CHIZU YOSHIOKA. "REGULAR PROJECTIONS OF KNOTTED HANDCUFF GRAPHS." Journal of Knot Theory and Its Ramifications 07, no. 04 (1998): 509–17. http://dx.doi.org/10.1142/s0218216598000279.

Pełny tekst źródła
Streszczenie:
We construct an infinite set of knotted handcuff graphs such that the set of the regular projections of the handcuff graphs in the set equals the set of the regular projections of all knotted handcuff graphs. We also show that no finite set of knotted handcuff graphs have this property.
Style APA, Harvard, Vancouver, ISO itp.
8

Filliman, P. "The largest projections of regular polytopes." Israel Journal of Mathematics 64, no. 2 (1988): 207–28. http://dx.doi.org/10.1007/bf02787224.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Hofmeister, M. "Enumeration of Concrete Regular Covering Projections." SIAM Journal on Discrete Mathematics 8, no. 1 (1995): 51–61. http://dx.doi.org/10.1137/s0895480193248186.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Pędzich, Paweł. "Image of the World on polyhedral maps and globes." Polish Cartographical Review 48, no. 4 (2016): 197–210. http://dx.doi.org/10.1515/pcr-2016-0014.

Pełny tekst źródła
Streszczenie:
Abstract Application of polyhedrons as image surface in cartographic projections has a tradition of more than 200 years. The first maps relying on polyhedrons appeared in the 19th century. One of the first maps which based on an original polyhedral projection using a regular octahedron was constructed by the Californian architect Bernard Cahill in 1909. Other well known polyhedral projections and maps included Buckminster Fuller’s projection and map into icosahedron from 1954 and S. Waterman’s projection into truncated octahedron from 1996, which resulted in the “butterfly” map. Polyhedrons as image surface have the advantage of allowing a continuous image of continents of the Earth with low projection distortion. Such maps can be used for many purposes, such as presentation of tectonic plates or geographic discoveries. The article presents most well known polyhedral maps, describes cartographic projections applied in their preparation, as well as contemporary examples of polyhedral maps. The method of preparation of a polyhedral map and a virtual polyhedral globe is also presented.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii