Artykuły w czasopismach na temat „Remodelled genes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Remodelled genes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Germain, Adeline, Jeanne-Marie Perotin, Gonzague Delepine, Myriam Polette, Gaëtan Deslée, and Valérian Dormoy. "Whole-Exome Sequencing of Bronchial Epithelial Cells Reveals a Genetic Print of Airway Remodelling in COPD." Biomedicines 10, no. 7 (2022): 1714. http://dx.doi.org/10.3390/biomedicines10071714.
Pełny tekst źródłaLi, Mengyao, Su Mon Aye, Maizbha Uddin Ahmed, et al. "Pan-transcriptomic analysis identified common differentially expressed genes of Acinetobacter baumannii in response to polymyxin treatments." Molecular Omics 16, no. 4 (2020): 327–38. http://dx.doi.org/10.1039/d0mo00015a.
Pełny tekst źródłaOu, Yaqing, and James O. McInerney. "Eukaryote Genes Are More Likely than Prokaryote Genes to Be Composites." Genes 10, no. 9 (2019): 648. http://dx.doi.org/10.3390/genes10090648.
Pełny tekst źródłaKuleesha, Yadav, Wee Choo Puah, and Martin Wasser. "A model of muscle atrophy based on live microscopy of muscle remodelling in Drosophila metamorphosis." Royal Society Open Science 3, no. 2 (2016): 150517. http://dx.doi.org/10.1098/rsos.150517.
Pełny tekst źródłaWang, Yuzhe, Shiyu Li, Mengge Liu, et al. "Rhodosporidium toruloides sir2-like genes remodelled the mitochondrial network to improve the phenotypes of ageing cells." Free Radical Biology and Medicine 134 (April 2019): 64–75. http://dx.doi.org/10.1016/j.freeradbiomed.2018.12.036.
Pełny tekst źródłaAhmedien, Diaa Ahmed Mohamed. "Bio-pixels: A stem cell-based interactive–generative interface designed to redefine technologies of self-making in new media arts." Convergence: The International Journal of Research into New Media Technologies 26, no. 5-6 (2019): 1367–90. http://dx.doi.org/10.1177/1354856519890096.
Pełny tekst źródłaVora, Hemangini Hasit. "Identification of Extra Cellular Matrix (ECM) Genes in Triple Negative Breast Cancer." Asian Pacific Journal of Cancer Biology 10, no. 2 (2025): 301–7. https://doi.org/10.31557/apjcb.2025.10.2.301-307.
Pełny tekst źródłaDalla Torre, Marco, Daniele Pittari, Alessandra Boletta, Laura Cassina, Roberto Sitia, and Tiziana Anelli. "Mitochondria remodeling during endometrial stromal cell decidualization." Life Science Alliance 7, no. 12 (2024): e202402627. http://dx.doi.org/10.26508/lsa.202402627.
Pełny tekst źródłaReik, Wolf, Fatima Santos, Kohzoh Mitsuya, Hugh Morgan, and Wendy Dean. "Epigenetic asymmetry in the mammalian zygote and early embryo: relationship to lineage commitment?" Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 358, no. 1436 (2003): 1403–9. http://dx.doi.org/10.1098/rstb.2003.1326.
Pełny tekst źródłaChen, Xinxin, Jun Wang, Donna Woltring, Steve Gerondakis, and M. Frances Shannon. "Histone Dynamics on the Interleukin-2 Gene in Response to T-Cell Activation." Molecular and Cellular Biology 25, no. 8 (2005): 3209–19. http://dx.doi.org/10.1128/mcb.25.8.3209-3219.2005.
Pełny tekst źródłaPRAJAPATI, SURENDRA K., RICHARD CULLETON, and OM P. SINGH. "Protein trafficking in Plasmodium falciparum-infected red cells and impact of the expansion of exported protein families." Parasitology 141, no. 12 (2014): 1533–43. http://dx.doi.org/10.1017/s0031182014000948.
Pełny tekst źródłaBoudin, Eveline, and Wim Van Hul. "MECHANISMS IN ENDOCRINOLOGY: Genetics of human bone formation." European Journal of Endocrinology 177, no. 2 (2017): R69—R83. http://dx.doi.org/10.1530/eje-16-0990.
Pełny tekst źródłaWood, W., M. Turmaine, R. Weber, et al. "Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos." Development 127, no. 24 (2000): 5245–52. http://dx.doi.org/10.1242/dev.127.24.5245.
Pełny tekst źródłaFarrell, K., K. Uh, and K. Lee. "45 Expression patterns of PRDM family genes in porcine pre-implantation embryos." Reproduction, Fertility and Development 32, no. 2 (2020): 148. http://dx.doi.org/10.1071/rdv32n2ab45.
Pełny tekst źródłaPaino, Francesca, Marcella La Noce, Alessandra Giuliani, et al. "Human DPSCs fabricate vascularized woven bone tissue: a new tool in bone tissue engineering." Clinical Science 131, no. 8 (2017): 699–713. http://dx.doi.org/10.1042/cs20170047.
Pełny tekst źródłaBen-Aicha, Soumaya, Rafael Escate, Laura Casaní та ін. "High-density lipoprotein remodelled in hypercholesterolaemic blood induce epigenetically driven down-regulation of endothelial HIF-1α expression in a preclinical animal model". Cardiovascular Research 116, № 7 (2019): 1288–99. http://dx.doi.org/10.1093/cvr/cvz239.
Pełny tekst źródłaVINCENTI, Matthew P., Charles I. COON, J. Andrew MENGSHOL, Sue YOCUM, Peter MITCHELL, and Constance E. BRINCKERHOFF. "Cloning of the gene for interstitial collagenase-3 (matrix metalloproteinase-13) from rabbit synovial fibroblasts: differential expression with collagenase-1 (matrix metalloproteinase-1)." Biochemical Journal 331, no. 1 (1998): 341–46. http://dx.doi.org/10.1042/bj3310341.
Pełny tekst źródłaKoenning, Matthias, Xianlong Wang, Menuka Karki, et al. "Neuronal SETD2 activity links microtubule methylation to an anxiety-like phenotype in mice." Brain 144, no. 8 (2021): 2527–40. http://dx.doi.org/10.1093/brain/awab200.
Pełny tekst źródłaFarrell, Jeffrey A., and Patrick H. O'Farrell. "From Egg to Gastrula: How the Cell Cycle Is Remodeled During theDrosophilaMid-Blastula Transition." Annual Review of Genetics 48, no. 1 (2014): 269–94. http://dx.doi.org/10.1146/annurev-genet-111212-133531.
Pełny tekst źródłaCiciarello, Marilena, Francesca Girotti, Darina Ocadlikova, et al. "Interferon-Gamma Production By Dysplastic Cells Supports an Immune-Tolerant Bone Marrow Microenvironment in Myelodysplastic Syndrome Patients." Blood 144, Supplement 1 (2024): 6687. https://doi.org/10.1182/blood-2024-203447.
Pełny tekst źródłaNorton, Kacie A., Ross Humphreys, Chelsey Weatherill, et al. "Subfertility in young male mice mutant for chromatin remodeller CECR2." Reproduction 163, no. 2 (2022): 69–83. http://dx.doi.org/10.1530/rep-19-0507.
Pełny tekst źródłaGonzález-Medina, Alberto, Esther Pazo, Elena Hidalgo, and José Ayté. "SWI/SNF and RSC remodeler complexes bind to MBF-dependent genes." Cell Cycle 20, no. 24 (2021): 2652–61. http://dx.doi.org/10.1080/15384101.2021.2008203.
Pełny tekst źródłaLoesch, Robin, Linda Chenane, and Sabine Colnot. "ARID2 Chromatin Remodeler in Hepatocellular Carcinoma." Cells 9, no. 10 (2020): 2152. http://dx.doi.org/10.3390/cells9102152.
Pełny tekst źródłaPoli, Jérôme, Susan M. Gasser, and Manolis Papamichos-Chronakis. "The INO80 remodeller in transcription, replication and repair." Philosophical Transactions of the Royal Society B: Biological Sciences 372, no. 1731 (2017): 20160290. http://dx.doi.org/10.1098/rstb.2016.0290.
Pełny tekst źródłaSoutourina, Julie, Véronique Bordas-Le Floch, Gabrielle Gendrel, et al. "Rsc4 Connects the Chromatin Remodeler RSC to RNA Polymerases." Molecular and Cellular Biology 26, no. 13 (2006): 4920–33. http://dx.doi.org/10.1128/mcb.00415-06.
Pełny tekst źródłaSubtil-Rodríguez, Alicia, Elena Vázquez-Chávez, María Ceballos-Chávez, et al. "The chromatin remodeller CHD8 is required for E2F-dependent transcription activation of S-phase genes." Nucleic Acids Research 42, no. 4 (2013): 2185–96. http://dx.doi.org/10.1093/nar/gkt1161.
Pełny tekst źródłaChutani, Namita, Sandhya Ragula, Khajamohiddin Syed, and Suresh B. Pakala. "Novel Insights into the Role of Chromatin Remodeler MORC2 in Cancer." Biomolecules 13, no. 10 (2023): 1527. http://dx.doi.org/10.3390/biom13101527.
Pełny tekst źródłaYao, Wei, Devin A. King, Sean L. Beckwith, et al. "The INO80 Complex Requires the Arp5-Ies6 Subcomplex for Chromatin Remodeling and Metabolic Regulation." Molecular and Cellular Biology 36, no. 6 (2016): 979–91. http://dx.doi.org/10.1128/mcb.00801-15.
Pełny tekst źródłaSong, Yawei, Zhengyu Liang, Jie Zhang, et al. "CTCF functions as an insulator for somatic genes and a chromatin remodeler for pluripotency genes during reprogramming." Cell Reports 39, no. 1 (2022): 110626. http://dx.doi.org/10.1016/j.celrep.2022.110626.
Pełny tekst źródłaChohra, Ilyas, Keshi Chung, Subhajit Giri, and Brigitte Malgrange. "ATP-Dependent Chromatin Remodellers in Inner Ear Development." Cells 12, no. 4 (2023): 532. http://dx.doi.org/10.3390/cells12040532.
Pełny tekst źródłaBogliotti, Y. S., L. B. Ferré, D. J. Humpal, and P. J. Ross. "68 EPIGENETIC REMODELING OF HISTONE 3 MARKS DURING BOVINE PRE-IMPLANTATION DEVELOPMENT." Reproduction, Fertility and Development 26, no. 1 (2014): 148. http://dx.doi.org/10.1071/rdv26n1ab68.
Pełny tekst źródłaYu, Xiaoming, Xinchao Meng, Yutong Liu, et al. "The chromatin remodeler ZmCHB101 impacts expression of osmotic stress-responsive genes in maize." Plant Molecular Biology 97, no. 4-5 (2018): 451–65. http://dx.doi.org/10.1007/s11103-018-0751-8.
Pełny tekst źródłaMorillon, Antonin. "Is histone loss a common feature of DNA metabolism regulation?This paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process." Biochemistry and Cell Biology 84, no. 4 (2006): 450–52. http://dx.doi.org/10.1139/o06-070.
Pełny tekst źródłaFeng, Ying, Yan Zhang, Zhiqing Lin, et al. "Chromatin remodeler Dmp18 regulates apoptosis by controlling H2Av incorporation in Drosophila imaginal disc development." PLOS Genetics 18, no. 9 (2022): e1010395. http://dx.doi.org/10.1371/journal.pgen.1010395.
Pełny tekst źródłaPadilla-Benavides, Teresita, Monserrat Olea-Flores, Tapan Sharma, et al. "Differential Contributions of mSWI/SNF Chromatin Remodeler Sub-Families to Myoblast Differentiation." International Journal of Molecular Sciences 24, no. 14 (2023): 11256. http://dx.doi.org/10.3390/ijms241411256.
Pełny tekst źródłaGidh-Jain, Madhavi, Boyu Huang, Praveer Jain, and Nabil El-Sherif. "Differential Expression of Voltage-Gated K+Channel Genes in Left Ventricular Remodeled Myocardium After Experimental Myocardial Infarction." Circulation Research 79, no. 4 (1996): 669–75. http://dx.doi.org/10.1161/01.res.79.4.669.
Pełny tekst źródłaCauston, Helen C., Bing Ren, Sang Seok Koh, et al. "Remodeling of Yeast Genome Expression in Response to Environmental Changes." Molecular Biology of the Cell 12, no. 2 (2001): 323–37. http://dx.doi.org/10.1091/mbc.12.2.323.
Pełny tekst źródłaReddy, B. Ashok, Prashanth Kumar Bajpe, Andrew Bassett, et al. "Drosophila Transcription Factor Tramtrack69 Binds MEP1 To Recruit the Chromatin Remodeler NuRD." Molecular and Cellular Biology 30, no. 21 (2010): 5234–44. http://dx.doi.org/10.1128/mcb.00266-10.
Pełny tekst źródłaMuñoz, Sofía, Francesca Passarelli, and Frank Uhlmann. "Conserved roles of chromatin remodellers in cohesin loading onto chromatin." Current Genetics 66, no. 5 (2020): 951–56. http://dx.doi.org/10.1007/s00294-020-01075-x.
Pełny tekst źródłaZhang, Heng, Brett Bishop, Whitney Ringenberg, William M. Muir, and Joe Ogas. "The CHD3 Remodeler PICKLE Associates with Genes Enriched for Trimethylation of Histone H3 Lysine 27." Plant Physiology 159, no. 1 (2012): 418–32. http://dx.doi.org/10.1104/pp.112.194878.
Pełny tekst źródłaPoupeau, Audrey, Christian Garde, Karolina Sulek, et al. "Genes controlling the activation of natural killer lymphocytes are epigenetically remodeled in intestinal cells from germ‐free mice." FASEB Journal 33, no. 2 (2018): 2719–31. http://dx.doi.org/10.1096/fj.201800787r.
Pełny tekst źródłaMelvin, Andrew, Sharon Mudie, and Sonia Rocha. "The chromatin remodeler ISWI regulates the cellular response to hypoxia: role of FIH." Molecular Biology of the Cell 22, no. 21 (2011): 4171–81. http://dx.doi.org/10.1091/mbc.e11-02-0163.
Pełny tekst źródłaCrosswhite, Patrick L. "ATP-dependent chromatin remodeling complexes in embryonic vascular development and hypertension." American Journal of Physiology-Heart and Circulatory Physiology 317, no. 3 (2019): H575—H580. http://dx.doi.org/10.1152/ajpheart.00147.2019.
Pełny tekst źródłaSingh, Parul, Jacques Serizay, Justine Couble, et al. "High-resolution map of the Plasmodium falciparum genome reveals MORC/ApiAP2-mediated links between distant, functionally related genes." Nature Microbiology 10, no. 7 (2025): 1665–83. https://doi.org/10.1038/s41564-025-02038-z.
Pełny tekst źródłaLi, Shitao, Lingyan Wang, Michael Berman, and Martin Dorf. "Mapping a dynamic innate immunity protein interaction network regulating type I interferon production (108.2)." Journal of Immunology 188, no. 1_Supplement (2012): 108.2. http://dx.doi.org/10.4049/jimmunol.188.supp.108.2.
Pełny tekst źródłaZhao, Haixin, Zhijun Han, Xinyuan Liu, et al. "The chromatin remodeler Chd4 maintains embryonic stem cell identity by controlling pluripotency- and differentiation-associated genes." Journal of Biological Chemistry 292, no. 20 (2017): 8507–19. http://dx.doi.org/10.1074/jbc.m116.770248.
Pełny tekst źródłaHussain, Shahid, Debasis Nayak, Sajad A. Wani, et al. "Abstract 6346: The chromatin remodeler SMARCA5 selectively shapes nuclear receptor signaling in African American prostate cancer." Cancer Research 85, no. 8_Supplement_1 (2025): 6346. https://doi.org/10.1158/1538-7445.am2025-6346.
Pełny tekst źródłaWalter, Korden, Constanze Bonifer, and Hiromi Tagoh. "Stem cell–specific epigenetic priming and B cell–specific transcriptional activation at the mouse Cd19 locus." Blood 112, no. 5 (2008): 1673–82. http://dx.doi.org/10.1182/blood-2008-02-142786.
Pełny tekst źródłaSperlazza, Justin, Mohamed Rahmani, Jason Beckta, et al. "Depletion of the chromatin remodeler CHD4 sensitizes AML blasts to genotoxic agents and reduces tumor formation." Blood 126, no. 12 (2015): 1462–72. http://dx.doi.org/10.1182/blood-2015-03-631606.
Pełny tekst źródłaQiu, Hongfang, Emily Biernat, Chhabi K. Govind, et al. "Chromatin remodeler Ino80C acts independently of H2A.Z to evict promoter nucleosomes and stimulate transcription of highly expressed genes in yeast." Nucleic Acids Research 48, no. 15 (2020): 8408–30. http://dx.doi.org/10.1093/nar/gkaa571.
Pełny tekst źródła