Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Retinal prosthesis.

Artykuły w czasopismach na temat „Retinal prosthesis”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Retinal prosthesis”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Kirpichnikov, M. P., and М. А. Оstrovsky. "Optogenetics and vision." Вестник Российской академии наук 89, no. 2 (2019): 125–30. http://dx.doi.org/10.31857/s0869-5873892125-130.

Pełny tekst źródła
Streszczenie:
In this article the authors discuss electronic and optogenetic approaches for degenerative (blind) retina prosthesis as the main strategies for the restoration of vision to blind people. Primary attention is devoted to the prospects of developing retinal prostheses for the blind using modern optogenetic methods, and rhodopsins, which are photosensitive retinal-binding proteins, are examined as potential tools for such prostheses. The authors consider the question of which particular cells of the degenerative retina for which rhodopsins can be prosthetic as well as ways of delivering the rhodop
Style APA, Harvard, Vancouver, ISO itp.
2

Nazari, Hossein, Paulo Falabella, Lan Yue, James Weiland, and Mark S. Humayun. "Retinal Prostheses." Journal of VitreoRetinal Diseases 1, no. 3 (2017): 204–13. http://dx.doi.org/10.1177/2474126417702067.

Pełny tekst źródła
Streszczenie:
Artificial vision is restoring sight by electrical stimulation of the visual system at the level of retina, optic nerve, lateral geniculate body, or occipital cortex. The development of artificial vision began with occipital cortex prosthesis; however, retinal prosthesis has advanced faster in recent years. Currently, multiple efforts are focused on finding the optimal approach for restoring vision through an implantable retinal microelectrode array system. Retinal prostheses function by stimulating the inner retinal neurons that survive retinal degeneration. In these devices, the visual infor
Style APA, Harvard, Vancouver, ISO itp.
3

Wu, Kevin Y., Mina Mina, Jean-Yves Sahyoun, Ananda Kalevar, and Simon D. Tran. "Retinal Prostheses: Engineering and Clinical Perspectives for Vision Restoration." Sensors 23, no. 13 (2023): 5782. http://dx.doi.org/10.3390/s23135782.

Pełny tekst źródła
Streszczenie:
A retinal prosthesis, also known as a bionic eye, is a device that can be implanted to partially restore vision in patients with retinal diseases that have resulted in the loss of photoreceptors (e.g., age-related macular degeneration and retinitis pigmentosa). Recently, there have been major breakthroughs in retinal prosthesis technology, with the creation of numerous types of implants, including epiretinal, subretinal, and suprachoroidal sensors. These devices can stimulate the remaining cells in the retina with electric signals to create a visual sensation. A literature review of the pre-cl
Style APA, Harvard, Vancouver, ISO itp.
4

Lyu, Qing, Zhuofan Lu, Heng Li, et al. "A Three-Dimensional Microelectrode Array to Generate Virtual Electrodes for Epiretinal Prosthesis Based on a Modeling Study." International Journal of Neural Systems 30, no. 03 (2020): 2050006. http://dx.doi.org/10.1142/s0129065720500069.

Pełny tekst źródła
Streszczenie:
Despite many advances in the development of retinal prostheses, clinical reports show that current retinal prosthesis subjects can only perceive prosthetic vision with poor visual acuity. A possible approach for improving visual acuity is to produce virtual electrodes (VEs) through electric field modulation. Generating controllable and localized VEs is a crucial factor in effectively improving the perceptive resolution of the retinal prostheses. In this paper, we aimed to design a microelectrode array (MEA) that can produce converged and controllable VEs by current steering stimulation strateg
Style APA, Harvard, Vancouver, ISO itp.
5

KIEN, TRAN TRUNG, TOMAS MAUL, and ANDRZEJ BARGIELA. "A REVIEW OF RETINAL PROSTHESIS APPROACHES." International Journal of Modern Physics: Conference Series 09 (January 2012): 209–31. http://dx.doi.org/10.1142/s2010194512005272.

Pełny tekst źródła
Streszczenie:
Age-related macular degeneration and retinitis pigmentosa are two of the most common diseases that cause degeneration in the outer retina, which can lead to several visual impairments up to blindness. Vision restoration is an important goal for which several different research approaches are currently being pursued. We are concerned with restoration via retinal prosthetic devices. Prostheses can be implemented intraocularly and extraocularly, which leads to different categories of devices. Cortical Prostheses and Optic Nerve Prostheses are examples of extraocular solutions while Epiretinal Pro
Style APA, Harvard, Vancouver, ISO itp.
6

Xu, Chenlin, Gengxi Lu, Haochen Kang, Mark S. Humayun, and Qifa Zhou. "Design and Simulation of a Ring Transducer Array for Ultrasound Retinal Stimulation." Micromachines 13, no. 9 (2022): 1536. http://dx.doi.org/10.3390/mi13091536.

Pełny tekst źródła
Streszczenie:
Argus II retinal prosthesis is the US Food and Drug Administration (FDA) approved medical device intended to restore sight to a patient’s blind secondary to retinal degeneration (i.e., retinitis pigmentosa). However, Argus II and most reported retinal prostheses require invasive surgery to implant electrodes in the eye. Recent studies have shown that focused ultrasound can be developed into a non-invasive retinal prosthesis technology. Ultrasound energy focused on retinal neurons can trigger the activities of retinal neurons with high spatial-temporal resolution. This paper introduces a novel
Style APA, Harvard, Vancouver, ISO itp.
7

Javaheri, Michael, David S. Hahn, Rohit R. Lakhanpal, James D. Weiland, and Mark S. Humayun. "Retinal Prostheses for the Blind." Annals of the Academy of Medicine, Singapore 35, no. 3 (2006): 137–44. http://dx.doi.org/10.47102/annals-acadmedsg.v35n3p137.

Pełny tekst źródła
Streszczenie:
Introduction: Using artificial means to treat extreme vision impairment has come closer to reality during the past few decades. The goal of this research has been to create an implantable medical device that provides useful vision for those patients who are left with no alternatives. Analogous to the cochlear implants for some forms of hearing loss, these devices could restore useful vision by converting visual information into patterns of electrical stimulation that excite the remaining viable inner retinal neurons in patients with retinitis pigmentosa or age-related macular degeneration. Met
Style APA, Harvard, Vancouver, ISO itp.
8

Weiland, James D., Wentai Liu, and Mark S. Humayun. "Retinal Prosthesis." Annual Review of Biomedical Engineering 7, no. 1 (2005): 361–401. http://dx.doi.org/10.1146/annurev.bioeng.7.060804.100435.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Weiland, James D., and Mark S. Humayun. "Retinal Prosthesis." IEEE Transactions on Biomedical Engineering 61, no. 5 (2014): 1412–24. http://dx.doi.org/10.1109/tbme.2014.2314733.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Rizzo, Joseph F., John Wyatt, Mark Humayun, et al. "Retinal prosthesis." Ophthalmology 108, no. 1 (2001): 13–14. http://dx.doi.org/10.1016/s0161-6420(00)00430-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Ehrenman, Gayle. "New Retinas for Old." Mechanical Engineering 125, no. 10 (2003): 42–46. http://dx.doi.org/10.1115/1.2003-oct-1.

Pełny tekst źródła
Streszczenie:
This article reviews retinal prosthesis that is a seeing-eye chip with as many as 1000 tiny electrodes to be implanted in the eye. It has the potential to help people who have lost their sight regain enough vision to function independently in the sighted world. The Artificial Retina Project is a collaboration of five US National laboratories, three universities, and the private sector. The interface module and the antenna for future versions of the retinal prosthesis will all be implanted in the eye, instead of outside the eye. The retinal prosthesis will help patients who still have neutral w
Style APA, Harvard, Vancouver, ISO itp.
12

Lin, Chin-Yu, Wan-Shiun Lou, Jyh-Chern Chen, et al. "Bio-Compatibility and Bio-Insulation of Implantable Electrode Prosthesis Ameliorated by A-174 Silane Primed Parylene-C Deposited Embedment." Micromachines 11, no. 12 (2020): 1064. http://dx.doi.org/10.3390/mi11121064.

Pełny tekst źródła
Streszczenie:
Microelectrodes for pain management, neural prosthesis or assistances have a huge medical demand, such as the application of pain management chip or retinal prosthesis addressed on age-related macular degeneration (AMD) and the retinitis pigmentosa (RP). Due to lifelong implanted in human body and direct adhesion of neural tissues, the electrodes and associated insulation materials should possess an ideal bio-compatibility, including non-cytotoxicity and no safety concern elicited by immune responses. Our goal intended to develop retinal prosthesis, an electrical circuit chip used for assistin
Style APA, Harvard, Vancouver, ISO itp.
13

Rao, V. Bhujanga, P. Seetharamaiah, and Nukapeyi Sharmili. "Design of a Prototype for Vision Prosthesis." International Journal of Biomedical and Clinical Engineering 7, no. 2 (2018): 1–13. http://dx.doi.org/10.4018/ijbce.2018070101.

Pełny tekst źródła
Streszczenie:
This article describes how the field of vision prostheses is currently being developed around the world to restore useful vision for people suffering from retinal degenerative diseases. The vision prosthesis system (VPS) maps visual images to electrical pulses and stimulates the surviving healthy parts in the retina of the eye, i.e. ganglion cells, using electric pulses applied through an electrode array. The retinal neurons send visual information to the brain. This article presents the design of a prototype vision prosthesis system which converts images/video into biphasic electric stimulati
Style APA, Harvard, Vancouver, ISO itp.
14

Weiland, J. D., and M. S. Humayun. "Intraocular retinal prosthesis." IEEE Engineering in Medicine and Biology Magazine 25, no. 5 (2006): 60–66. http://dx.doi.org/10.1109/memb.2006.1705748.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Bellapianta, Alessandro, Ana Cetkovic, Matthias Bolz, and Ahmad Salti. "Retinal Organoids and Retinal Prostheses: An Overview." International Journal of Molecular Sciences 23, no. 6 (2022): 2922. http://dx.doi.org/10.3390/ijms23062922.

Pełny tekst źródła
Streszczenie:
Despite the progress of modern medicine in the last decades, millions of people diagnosed with retinal dystrophies (RDs), such as retinitis pigmentosa, or age-related diseases, such as age-related macular degeneration, are suffering from severe visual impairment or even legal blindness. On the one hand, the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) and the progress of three-dimensional (3D) retinal organoids (ROs) technology provide a great opportunity to study, understand, and even treat retinal diseases. On the other hand, research advances in the field of el
Style APA, Harvard, Vancouver, ISO itp.
16

Duan, Fei Long, and Zhi Jie Wang. "A Model of Human Cone Based on Physiological Distribution." Applied Mechanics and Materials 364 (August 2013): 838–42. http://dx.doi.org/10.4028/www.scientific.net/amm.364.838.

Pełny tekst źródła
Streszczenie:
A good computer retinal model is the key to realize retinal prosthesis. In some of the previous studies, the modeling of cone cell was not considered in retinal models; in other studies, although the model of cone cell was included in the retinal models, its distribution features was hardly taken into consideration at all. In this paper we present an improved cone cell model and realize the model based on cameras. First, based on the physiological data that cone cell is high in the fovea and falls quickly with eccentricity increased, distribution function model of the retina is successfully bu
Style APA, Harvard, Vancouver, ISO itp.
17

KANDA, Hiroyuki, and Takashi FUJIKADO. "Input BMI: Retinal Prosthesis." Journal of the Japan Society for Precision Engineering 83, no. 11 (2017): 988–91. http://dx.doi.org/10.2493/jjspe.83.988.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Ohta, Jun, Takashi Tokuda, and Keiichiro Kagawa. "Implantable retinal prosthesis devices." Review of Laser Engineering 35, Supplement (2007): 210–11. http://dx.doi.org/10.2184/lsj.35.210.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Horejs, Christine. "A liquid retinal prosthesis." Nature Reviews Materials 5, no. 8 (2020): 559. http://dx.doi.org/10.1038/s41578-020-0226-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Hampton, Tracy. "Retinal Prosthesis for Blindness." JAMA 308, no. 13 (2012): 1310. http://dx.doi.org/10.1001/jama.2012.13155.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Lo, Pei-An, Kyana Huang, Qifa Zhou, Mark S. Humayun, and Lan Yue. "Ultrasonic Retinal Neuromodulation and Acoustic Retinal Prosthesis." Micromachines 11, no. 10 (2020): 929. http://dx.doi.org/10.3390/mi11100929.

Pełny tekst źródła
Streszczenie:
Ultrasound is an emerging method for non-invasive neuromodulation. Studies in the past have demonstrated that ultrasound can reversibly activate and inhibit neural activities in the brain. Recent research shows the possibility of using ultrasound ranging from 0.5 to 43 MHz in acoustic frequency to activate the retinal neurons without causing detectable damages to the cells. This review recapitulates pilot studies that explored retinal responses to the ultrasound exposure, discusses the advantages and limitations of the ultrasonic stimulation, and offers an overview of engineering perspectives
Style APA, Harvard, Vancouver, ISO itp.
22

Yang, Jia-Wei, Zih-Yu Yu, Sheng-Jen Cheng, et al. "Graphene Oxide–Based Nanomaterials: An Insight into Retinal Prosthesis." International Journal of Molecular Sciences 21, no. 8 (2020): 2957. http://dx.doi.org/10.3390/ijms21082957.

Pełny tekst źródła
Streszczenie:
Retinal prosthesis has recently emerged as a treatment strategy for retinopathies, providing excellent assistance in the treatment of age-related macular degeneration (AMD) and retinitis pigmentosa. The potential application of graphene oxide (GO), a highly biocompatible nanomaterial with superior physicochemical properties, in the fabrication of electrodes for retinal prosthesis, is reviewed in this article. This review integrates insights from biological medicine and nanotechnology, with electronic and electrical engineering technological breakthroughs, and aims to highlight innovative objec
Style APA, Harvard, Vancouver, ISO itp.
23

Oh, Yeonji, Jonggi Hong, and Jungsuk Kim. "Retinal prosthesis edge detection (RPED) algorithm: Low-power and improved visual acuity strategy for artificial retinal implants." PLOS ONE 19, no. 6 (2024): e0305132. http://dx.doi.org/10.1371/journal.pone.0305132.

Pełny tekst źródła
Streszczenie:
This paper proposes a retinal prosthesis edge detection (RPED) algorithm that can achieve high visual acuity and low power. Retinal prostheses have been used to stimulate retinal tissue by injecting charge via an electrode array, thereby artificially restoring the vision of visually impaired patients. The retinal prosthetic chip, which generates biphasic current pulses, should be located in the foveal area measuring 5 mm × 5 mm. When a high-density stimulation pixel array is realized in a limited area, the distance between the stimulation pixels narrows, resulting in current dispersion and hig
Style APA, Harvard, Vancouver, ISO itp.
24

OHTA, Jun, Toshihiko NODA, Kenzo SHODO, et al. "Stimulator Design of Retinal Prosthesis." IEICE Transactions on Electronics E100.C, no. 6 (2017): 523–28. http://dx.doi.org/10.1587/transele.e100.c.523.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Doorish, John F. "Artificial epi-Retinal Prosthesis (AeRP)." Journal of Modern Optics 53, no. 9 (2006): 1245–66. http://dx.doi.org/10.1080/09500340600618629.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Ameri, Hossein. "Retinal prosthesis, potential future approaches." Clinical & Experimental Ophthalmology 42, no. 7 (2014): 599–600. http://dx.doi.org/10.1111/ceo.12410.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Olmos de Koo, Lisa C., and Ninel Z. Gregori. "The Argus II Retinal Prosthesis." International Ophthalmology Clinics 56, no. 4 (2016): 39–46. http://dx.doi.org/10.1097/iio.0000000000000144.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

BARRETT, JOHN MARTIN, ROLANDO BERLINGUER-PALMINI, and PATRICK DEGENAAR. "Optogenetic approaches to retinal prosthesis." Visual Neuroscience 31, no. 4-5 (2014): 345–54. http://dx.doi.org/10.1017/s0952523814000212.

Pełny tekst źródła
Streszczenie:
AbstractThe concept of visual restoration via retinal prosthesis arguably started in 1992 with the discovery that some of the retinal cells were still intact in those with the retinitis pigmentosa disease. Two decades later, the first commercially available devices have the capability to allow users to identify basic shapes. Such devices are still very far from returning vision beyond the legal blindness. Thus, there is considerable continued development of electrode materials, and structures and electronic control mechanisms to increase both resolution and contrast. In parallel, the field of
Style APA, Harvard, Vancouver, ISO itp.
29

Margalit, Eyal, Mauricio Maia, James D. Weiland, et al. "Retinal Prosthesis for the Blind." Survey of Ophthalmology 47, no. 4 (2002): 335–56. http://dx.doi.org/10.1016/s0039-6257(02)00311-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Damle, Samir, Yu-Hwa Lo, and William R. Freeman. "High Visual Acuity Retinal Prosthesis." Retina 37, no. 8 (2017): 1423–27. http://dx.doi.org/10.1097/iae.0000000000001660.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Bloch, Edward, Yvonne Luo, and Lyndon da Cruz. "Advances in retinal prosthesis systems." Therapeutic Advances in Ophthalmology 11 (January 2019): 251584141881750. http://dx.doi.org/10.1177/2515841418817501.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Özmert, Emin, and Sibel Demirel. "Endoscope-Assisted and Controlled Argus II Epiretinal Prosthesis Implantation in Late-Stage Retinitis Pigmentosa: A Report of 2 Cases." Case Reports in Ophthalmology 7, no. 3 (2016): 593–602. http://dx.doi.org/10.1159/000453606.

Pełny tekst źródła
Streszczenie:
Several different approaches for restoring sight in subjects who are blind due to outer retinal degeneration are currently under investigation, including stem cell therapy, gene therapy, and visual prostheses. Although many different types of visual prostheses have shown promise, to date, the Argus II Epiretinal Prosthesis System, developed in a clinical setting over the course of 10 years, is the world’s first and only retinal prosthesis that has been approved by the United States Food and Drug Administration (FDA) and has been given the CE-Mark for sale within the European Economic Area (EEA
Style APA, Harvard, Vancouver, ISO itp.
33

Sidhu, Sophia, Patrice J. Persad, Byron L. Lam, Kasey L. Zann, and Ninel Z. Gregori. "Current Assistive Devices Usage and Recommendations for a Future Artificial Vision Prosthesis among Patients with Severe Visual Impairment Due to Inherited Retinal Diseases." Journal of Clinical Medicine 12, no. 16 (2023): 5283. http://dx.doi.org/10.3390/jcm12165283.

Pełny tekst źródła
Streszczenie:
Patients with inherited retinal diseases (IRDs) utilize various adaptive techniques and devices designed to assist them with activities of daily living (ADLs). The purpose of this study was to assess the assistive devices used by patients with IRDs, the difficulties they face despite these devices, and their recommendations for a future visual prosthesis. In collaboration with blind patients, an online survey was developed and administered to adults with IRDs and visual acuities of 20/400 to no light perception in the better-seeing eye. We analyzed data from 121 survey respondents (aged 18 to
Style APA, Harvard, Vancouver, ISO itp.
34

Alqahtani, Abdulrahman. "Investigating Different Paradigms of Electrical Stimulation for Retinal Prosthesis." Majmaah Journal of Health Sciences 12, no. 2 (2024): 108. http://dx.doi.org/10.5455/mjhs.2024.02.011.

Pełny tekst źródła
Streszczenie:
Background and Aims: Retinal prostheses have been suggested to restore vision for those with retinal diseases. This study aimed to identify the most effective stimulation approaches for retinal prostheses. Methods: This study examined various return electrode configurations on a realistic retinal ganglion cell model. Two return electrode configurations, monopolar and hexapolar, were implanted on epiretinal side. There were four waveforms used to send electrical current through the active electrode. The study also compared two stimulation methods: single stimulation and concurrent (parallel) st
Style APA, Harvard, Vancouver, ISO itp.
35

Gautam, Vini, and KS Narayan. "Polymer optoelectronic structures for retinal prosthesis." Organogenesis 10, no. 1 (2014): 9–12. http://dx.doi.org/10.4161/org.28316.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Husain, Deeba, and John I. Loewenstein. "Surgical Approaches to Retinal Prosthesis Implantation." International Ophthalmology Clinics 44, no. 1 (2004): 105–11. http://dx.doi.org/10.1097/00004397-200404410-00012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Chow, Alan Y., and Neal S. Peachey. "The Subretinal Microphotodiode Array Retinal Prosthesis." Ophthalmic Research 30, no. 3 (1998): 195–96. http://dx.doi.org/10.1159/000055474.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Hallum, L. E., S. L. Cloherty, and N. H. Lovell. "Image Analysis for Microelectronic Retinal Prosthesis." IEEE Transactions on Biomedical Engineering 55, no. 1 (2008): 344–46. http://dx.doi.org/10.1109/tbme.2007.903713.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Ahuja, A. K., M. R. Behrend, M. Kuroda, M. S. Humayun, and J. D. Weiland. "AnIn VitroModel of a Retinal Prosthesis." IEEE Transactions on Biomedical Engineering 55, no. 6 (2008): 1744–53. http://dx.doi.org/10.1109/tbme.2008.919126.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Horsager, Alan, Robert J. Greenberg, and Ione Fine. "Spatiotemporal Interactions in Retinal Prosthesis Subjects." Investigative Opthalmology & Visual Science 51, no. 2 (2010): 1223. http://dx.doi.org/10.1167/iovs.09-3746.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Troy, John, Corey Rountree, and Laxman Saggere. "Development of a chemical retinal prosthesis." Journal of Vision 19, no. 8 (2019): 16. http://dx.doi.org/10.1167/19.8.16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Ameri, Hossein, Tanapat Ratanapakorn, Stefan Ufer, Helmut Eckhardt, Mark S. Humayun, and James D. Weiland. "Toward a wide-field retinal prosthesis." Journal of Neural Engineering 6, no. 3 (2009): 035002. http://dx.doi.org/10.1088/1741-2560/6/3/035002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Ghezzi, Diego. "Translation of a photovoltaic retinal prosthesis." Nature Biomedical Engineering 4, no. 2 (2020): 137–38. http://dx.doi.org/10.1038/s41551-020-0520-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Caspi, Avi. "Feasibility Study of a Retinal Prosthesis." Archives of Ophthalmology 127, no. 4 (2009): 398. http://dx.doi.org/10.1001/archophthalmol.2009.20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Tokuda, Takashi, Sachie Sugitani, Ryosuke Asano, et al. "A CMOS LSI-Based Flexible Retinal Stimulator for Retinal Prosthesis." IEEJ Transactions on Electronics, Information and Systems 127, no. 10 (2007): 1588–94. http://dx.doi.org/10.1541/ieejeiss.127.1588.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Ye, Jang Hee, Sang Baek Ryu, Kyung Hwan Kim, and Yong Sook Goo. "Functional Connectivity Map of Retinal Ganglion Cells for Retinal Prosthesis." Korean Journal of Physiology and Pharmacology 12, no. 6 (2008): 307. http://dx.doi.org/10.4196/kjpp.2008.12.6.307.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Nakanishi, Yuki, Kiyotaka Sasagawa, Ronnakorn Siwadamrongpong, et al. "Implantable AC-driven CMOS chip for distributed multichip retinal prosthesis capable of high-rate stimulation." Japanese Journal of Applied Physics 62, SC (2023): SC1077. http://dx.doi.org/10.35848/1347-4065/acb77d.

Pełny tekst źródła
Streszczenie:
Abstract Implantable retinal prostheses are stimulation devices used to compensate for the light sensitivity loss of retinal cells. In this study, we propose and demonstrate a novel method to significantly reduce the setting time for the stimulation conditions of a retinal prosthesis chip capable of multi-electrode stimulation. The efficiency of the control method is increased while using only two wires, as in our previous work. The chip comprises an 8 bit ID and 7 electrodes, and the stimulation current value can be set from 50 to 1550 μA. The fabricated chip requires only 32 pulses to set th
Style APA, Harvard, Vancouver, ISO itp.
48

Shire, Douglas, Marcus Gingerich, Patricia Wong, et al. "Micro-Fabrication of Components for a High-Density Sub-Retinal Visual Prosthesis." Micromachines 11, no. 10 (2020): 944. http://dx.doi.org/10.3390/mi11100944.

Pełny tekst źródła
Streszczenie:
We present a retrospective of unique micro-fabrication problems and solutions that were encountered through over 10 years of retinal prosthesis product development, first for the Boston Retinal Implant Project initiated at the Massachusetts Institute of Technology and at Harvard Medical School’s teaching hospital, the Massachusetts Eye and Ear—and later at the startup company Bionic Eye Technologies, by some of the same personnel. These efforts culminated in the fabrication and assembly of 256+ channel visual prosthesis devices having flexible multi-electrode arrays that were successfully impl
Style APA, Harvard, Vancouver, ISO itp.
49

Rachitskaya, Aleksandra V., and Alex Yuan. "Argus II retinal prosthesis system: An update." Ophthalmic Genetics 37, no. 3 (2016): 260–66. http://dx.doi.org/10.3109/13816810.2015.1130152.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Caravaca-Rodriguez, Daniel, Susana P. Gaytan, Gregg J. Suaning, and Alejandro Barriga-Rivera. "Implications of Neural Plasticity in Retinal Prosthesis." Investigative Opthalmology & Visual Science 63, no. 11 (2022): 11. http://dx.doi.org/10.1167/iovs.63.11.11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!