Gotowa bibliografia na temat „Robotic system identification”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Robotic system identification”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Robotic system identification"
Ghiță, Alexandra Ștefania, i Adina Magda Florea. "Real-Time People Re-Identification and Tracking for Autonomous Platforms Using a Trajectory Prediction-Based Approach". Sensors 22, nr 15 (5.08.2022): 5856. http://dx.doi.org/10.3390/s22155856.
Pełny tekst źródłaSwamy, Puchala Jaswanth Phaneendra, B. YeswanthKumar Reddy i K. Chandrasekhar. "Intelligent Surveillance Using Robot Eye and Sensor System". Applied Mechanics and Materials 917 (13.10.2023): 27–38. http://dx.doi.org/10.4028/p-4yneed.
Pełny tekst źródłaPrado da Fonseca, Vinicius. "Tactile Sensor Analysis during Early Stages of Manipulation for Single Grasp Identification of Daily Objects". Engineering Proceedings 6, nr 1 (17.05.2021): 56. http://dx.doi.org/10.3390/i3s2021dresden-10091.
Pełny tekst źródłaAngel, L., J. Viola i C. Hernández. "Parametric uncertain identification of a robotic system". IOP Conference Series: Materials Science and Engineering 138 (lipiec 2016): 012008. http://dx.doi.org/10.1088/1757-899x/138/1/012008.
Pełny tekst źródłaShafie, Amir Akramin, Azhar Bin Mohd Ibrahim i Muhammad Mahbubur Rashid. "Smart Objects Identification System for Robotic Surveillance". International Journal of Automation and Computing 11, nr 1 (luty 2014): 59–71. http://dx.doi.org/10.1007/s11633-014-0766-9.
Pełny tekst źródłaOjha, Varsha. "Robotics In Gynecology- A Review". Obstetrics Gynecology and Reproductive Sciences 8, nr 5 (26.07.2024): 01–07. http://dx.doi.org/10.31579/2578-8965/224.
Pełny tekst źródłaKarras, George C., Panos Marantos, Charalampos P. Bechlioulis i Kostas J. Kyriakopoulos. "Unsupervised Online System Identification for Underwater Robotic Vehicles". IEEE Journal of Oceanic Engineering 44, nr 3 (lipiec 2019): 642–63. http://dx.doi.org/10.1109/joe.2018.2827678.
Pełny tekst źródłaCondés, Ignacio, Jesús Fernández-Conde, Eduardo Perdices i José M. Cañas. "Robust Person Identification and Following in a Mobile Robot Based on Deep Learning and Optical Tracking". Electronics 12, nr 21 (27.10.2023): 4424. http://dx.doi.org/10.3390/electronics12214424.
Pełny tekst źródłaRupali S. Kokate, Saniya Ansari, S. M. Khairnar, Ravindra R. Patil,. "AN ASSESSMENT - WATER QUALITY MONITORING PRACTICES AND SEWER ROBOTIC SYSTEMS". INFORMATION TECHNOLOGY IN INDUSTRY 9, nr 1 (28.02.2021): 140–48. http://dx.doi.org/10.17762/itii.v9i1.113.
Pełny tekst źródłaGarcía-Luna, F., i A. Morales-Díaz. "Towards an artificial vision-robotic system for tomato identification". IFAC-PapersOnLine 49, nr 16 (2016): 365–70. http://dx.doi.org/10.1016/j.ifacol.2016.10.067.
Pełny tekst źródłaRozprawy doktorskie na temat "Robotic system identification"
Dang, Kim Son Mechanical & Manufacturing Engineering Faculty of Engineering UNSW. "Design and control of autonomous crop tracking robotic weeder : GreenWeeder". Publisher:University of New South Wales. Mechanical & Manufacturing Engineering, 2009. http://handle.unsw.edu.au/1959.4/44418.
Pełny tekst źródłaGiantomassi, Andrea. "Modeling, estimation and identification of complex system dynamics: issues and solutions". Doctoral thesis, Università Politecnica delle Marche, 2012. http://hdl.handle.net/11566/242023.
Pełny tekst źródłaModels of real systems are of fundamental importance in all disciplines, and they are useful for system analysis, prediction or simulation of a real system. Two practices exist to define models: modeling by physical laws and by identification. Physical modeling is based on known laws. Identification consists in the selection of a model in a specified class on the basis of observations performed on the system to be described. A contribution to complex system dynamics identification and estimation is given. With particular attention to real systems, three solutions are discussed. The first issue deals with a Municipal Solid Waste incinerator, where first principles mathematical models are too complex to be implemented. The procedure proposed is able to estimate and predict, the steam production of a MSW incinerator. The learning algorithm is based on radial basis function networks and combines the Minimal Resource Allocating Network technique with an adaptive extended Kalman filter to update the network parameters. The second issue regard the control error compensation for an industrial manipulator. If a controller is well designed the control error cannot be compensated. However in the discrete Sliding Mode Controller, control errors carry information about residual dynamics. Two approaches are proposed for uncertainties compensations, the objective is to develop a more robust and accurate discrete SMC using two solutions, a model based uncertainty estimator, and an auto-tuning predictor. Fault Detection and Diagnosis has received an increasing interest in years. The last issue regard a Fault Detection and Isolation procedure that is applied for the defects detection and analysis of electrical motors at the end of the production line in a hoods production plant. The objective consists of detect and identify defective motors for the quality analysis. A signal based FDI approach is preferred for the characteristics of acquired signals and for the implementation solution.
Mahé, Antoine. "Identification de systèmes par réseaux de neurones pour la commande prédictive". Electronic Thesis or Diss., CentraleSupélec, 2020. http://www.theses.fr/2020CSUP0010.
Pełny tekst źródłaDeveloping mobile robotic allow to address ever more complex task autonomously.This thesis is part of the GRoNe project which aim at improving knowledge and experimentation on this topic. In this context automation is a key element. Developing efficient control algorithm is a step in that direction. Model predictive control has shown good result and interesting advantages in mobile robotic. Implementing this algorithm require precise system modelling in order to predict their evolution. In robotic modelling is usually solved by system identification. In this context machine learning is often a powerful tool. In order to model robotic system, data collection of their behaviour both in simulation and on the real platform have been collected. Several neural network architecture have been compared. Collected sample may not correspond to the condition of target task making part of the training irrelevant. A solution to that problem is to use prioritization during the training. Two prioritization scheme are compared. Modelling is only a step toward control. Thus it is important to test the obtained model as part of the whole control algorithm. The application of this controller to a drone and a boat, in simulation as well as on the real platform, allow to study its advantages. In the end a model train with prioritization is used in a model predictive controller on the real boat to perform shore following in an artificial lac
Tuna, Eser Erdem. "PERCEPTION AND CONTROL OF AN MRI-GUIDED ROBOTIC CATHETER IN DEFORMABLE ENVIRONMENTS". Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1619795928790909.
Pełny tekst źródłaÅkesson, Ulrik. "Design of a multi-camera system for object identification, localisation, and visual servoing". Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-44082.
Pełny tekst źródłaTout, Bilal. "Identification of human-robot systems in physical interaction : application to muscle activity detection". Electronic Thesis or Diss., Valenciennes, Université Polytechnique Hauts-de-France, 2024. https://ged.uphf.fr/nuxeo/site/esupversions/36d9eab3-c170-4e40-abb6-e6b4e27aeee2.
Pełny tekst źródłaOver the last years, physical human-robot interaction has become an important research subject, for example for rehabilitation applications. This PhD aims at improving these interactions, as part of model-based controllers development, using parametric identification approaches to identify models of the systems in interaction. The goal is to develop identification methods taking into account the variability and complexity of the human body, and only using the sensor of the robotic system to avoid adding external sensors. The different approaches presented in this thesis are tested experimentally on a one degree of freedom (1-DOF) system allowing the interaction with a person’s hand.After a 1st chapter presenting the state-of-the-art, the 2nd chapter tackles the identification methods developed in robotics as well as the issue of data filtering, analyzed both in simulation and experimentally. The question of the low-pass filter tuning is addressed, and in particular the choice of the cut-off frequency which remains delicate for a nonlinear system. To overcome these difficulties, a filtering technique using an extended Kalman filter (EKF) is developed from the robot dynamic model. The proposed EKF formulation allows a filter tuning depending on the known properties of the sensor and on the confidence on the initial parameters estimations. This method is compared in simulation and experimentally to different existing methods by analyzing its sensitivity to initialization and filter tuning. Results show that the proposed method is promising if the EKF is correctly tuned.The 3rd chapter concerns the continuous identification of the parameters of the model of a passive system interacting with a robotic system, by combining payload identification methods with online identification algorithms, without external sensors. These methods are validated in simulation and experimentally with the 1-DOF system whose handle is attached to elastic rubber bands to emulate a passive human joint. The analysis of the effects of the online methods tuning highlights a necessary trade-off between the convergence speed and the accuracy of the parameters estimates. Finally, the comparison of the payload identification methods shows that methods identifying separately the robotic system and the passive human parameters give better accuracy and a lower computation complexity.The 4th chapter deals with the identification during the human-robot interaction. A quadratic stiffness model is proposed to better fit the passive human joint behavior than a linear stiffness model. Then, this model is used with an iterative identification method based on outlier rejection technique, to detect the human user muscle activity without external sensors. This method is compared experimentally to a non-iterative method that uses electromyography (EMG), by adapting the 1-DOF system to interact with the wrist and to allow the detection of the flexor and extensor muscle activity of two human users. The proposed iterative identification method not using EMG signals achieves results close to those obtained with the non-iterative method using EMG signals when a model that correctly represents the passive human joint behavior is selected. The muscle activity detection results obtained with both methods show a satisfactory level of similarity compared to those obtained directly from EMG signals
Wang, Zeya. "Robotisation de la fabrication additive par procédé arc-fil : Identification et amélioration de la commande". Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0068.
Pełny tekst źródłaAdditive manufacturing of metallic parts has gained significant popularity in recent years as an important technological solution for the production of complex parts. Among the different processes of metal additive manufacturing, the wire-arc additive manufacturing (WAAM) using CMT (Cold metal transfer) welding is taken for our study because of its high deposition rate, low cost of equipment and little loss of material (low spatter) during manufacturing. In the literature review, it can be noted that one of the most important problems that prevent the industrial application of the WAAM is the poor geometric accuracy of the manufactured parts due to the instability of the process and the lack of reliable control system to deal with irregularities during deposition. The focus of this work is to improve the stability and geometric performance of the process. In this work, an experimental system is implemented to robotize the process and to monitor the geometry of the deposited parts. The process is modeled by artificial neural networks and a control system is developed to regulate the geometry of the deposit and to reduce manufacturing errors. Furthermore, an improvement strategy is applied in order to reduce the geometric instabilities at the ends of the bead; an in-situ monitoring method is also developed to detect the internal defects of deposited parts
Cetin, Murat. "Performance identification and multi-criteria redundancy resolution for robotic systems /". Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Pełny tekst źródłaLeijonhufvud, Peder, i Emil Bråkenhielm. "Image Processing for Improved Bacteria Classification". Thesis, Linköpings universitet, Programvara och system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-167416.
Pełny tekst źródłaLarsson, Joel, i Rasmus Hedberg. "Development of machine learning models for object identification of parasite eggs using microscopy". Thesis, Uppsala universitet, Signaler och system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414386.
Pełny tekst źródłaKsiążki na temat "Robotic system identification"
Khalil, W. Modeling, identification & control of robots. London: HPS, 2002.
Znajdź pełny tekst źródłaE, Dombre, red. Modeling identification & control of robots. New York, NY: Taylor & Francis, 2002.
Znajdź pełny tekst źródłaE, Dombre, red. Modeling, identification & control of robots. London: Kogan Page Science, 2004.
Znajdź pełny tekst źródłaM, Milanese, red. Bounding approaches to system identification. New York: Plenum Press, 1996.
Znajdź pełny tekst źródłaInternational Workshop on Neural Networks for Identification, Control, Robotics, and Signal/Image Processing (1996 Venice, Italy). Proceedings: International Workshop on Neural Networks for Identification, Control, Robotics, and Signal/Image Processing, Venice, Italy, August 21-23, 1996. Los Alamitos, CA: IEEE Computer Society Press, 1996.
Znajdź pełny tekst źródłaLiu, Chengjun. Cross Disciplinary Biometric Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Znajdź pełny tekst źródłaSnow, Edward Ramsey. Advances in grasping and vehicle contact identification: Analysis, design and testing of robust methods for underwater robot manipulation. Cambridge, Mass: Massachusetts Institute of Technology, 1999.
Znajdź pełny tekst źródłaH, Connell Jonathan, Pankanti Sharath, Ratha Nalini K i Senior Andrew W, red. Guide to biometrics. New York, NY: Springer, 2004.
Znajdź pełny tekst źródłaChrisina, Jayne, i SpringerLink (Online service), red. Engineering Applications of Neural Networks: 12th INNS EANN-SIG International Conference, EANN 2011 and 7th IFIP WG 12.5 International Conference, AIAI 2011, Corfu, Greece, September 15-18, 2011, Proceedings Part I. Berlin, Heidelberg: IFIP International Federation for Information Processing, 2011.
Znajdź pełny tekst źródłaTravieso-González, Carlos M. Advances in Nonlinear Speech Processing: 5th International Conference on Nonlinear Speech Processing, NOLISP 2011, Las Palmas de Gran Canaria, Spain, November 7-9, 2011. Proceedings. Berlin, Heidelberg: Springer-Verlag GmbH Berlin Heidelberg, 2011.
Znajdź pełny tekst źródłaCzęści książek na temat "Robotic system identification"
Pillonetto, Gianluigi, Tianshi Chen, Alessandro Chiuso, Giuseppe De Nicolao i Lennart Ljung. "Numerical Experiments and Real World Cases". W Regularized System Identification, 343–69. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95860-2_9.
Pełny tekst źródłaVasudevan, Ram. "Hybrid System Identification via Switched System Optimal Control for Bipedal Robotic Walking". W Springer Tracts in Advanced Robotics, 635–50. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29363-9_36.
Pełny tekst źródłaLiu, Minglei, Hongbo Zhou i Aiping Pang. "Research on Motion Control System of 6-DOF Robotic Arm". W Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019), 53–61. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0474-7_6.
Pełny tekst źródłaYang, Chunxia, Ming Zhan i Ziying Yao. "Multi-agent Simulation-Based Urban Waterfront Public Space Quality Comprehensive Measurement Indexes". W Computational Design and Robotic Fabrication, 536–48. Singapore: Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-3433-0_47.
Pełny tekst źródłaBalabantaray, Bunil Kumar, Bandita Das i Bibhuti Bhusan Biswal. "Comparison of Edge Detection Algorithm for Part Identification in a Vision Guided Robotic Assembly System". W Soft Computing Techniques in Engineering Applications, 183–206. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04693-8_12.
Pełny tekst źródłaRobinett, Rush D., Clark R. Dohrmann, G. Richard Eisler, John T. Feddema, Gordon G. Parker, David G. Wilson i Dennis Stokes. "System Identification". W Flexible Robot Dynamics and Controls, 133–59. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0539-6_4.
Pełny tekst źródłaZhou, Jian-jun, i Finn Conrad. "Identification and Evaluation of Hydraulic Actuator Models for a Two-Link Robot Manipulator". W Robotic Systems, 577–84. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2526-0_66.
Pełny tekst źródłaRenders, Jean-Michel, José del R. Millan i Marc Becquet. "Non-Geometrical Parameters Identification for Robot Kinematic Calibration by use of Neural Network Techniques". W Robotic Systems, 37–44. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2526-0_5.
Pełny tekst źródłaBrent, Sarah, Chengzhi Yuan i Paolo Stegagno. "Swarm Localization Through Cooperative Landmark Identification". W Distributed Autonomous Robotic Systems, 429–41. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92790-5_33.
Pełny tekst źródłaNehmzow, Ulrich. "Accurate Simulation Through System Identification". W Robot Behaviour, 1–17. London: Springer London, 2008. http://dx.doi.org/10.1007/978-1-84800-397-2_8.
Pełny tekst źródłaStreszczenia konferencji na temat "Robotic system identification"
Coleman, David, i Moble Benedict. "System Identification of a Hover-Capable Robotic Hummingbird". W Vertical Flight Society 72nd Annual Forum & Technology Display, 1–13. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11359.
Pełny tekst źródłaTian, Huanyu, Martin Huber, Christopher E. Mower, Zhe Han, Changsheng Li, Xingguang Duan i Christos Bergeles. "Excitation Trajectory Optimization for Dynamic Parameter Identification Using Virtual Constraints in Hands-on Robotic System". W 2024 IEEE International Conference on Robotics and Automation (ICRA), 11605–11. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610950.
Pełny tekst źródłaBrisacier-Porchon, Lorraine, i Omar Hammami. "Identification and listing of operation research problems in the framework of heterogeneous robotic swarms in System-of-Systems: a path for consistent research targets". W 2024 19th Annual System of Systems Engineering Conference (SoSE), 314–20. IEEE, 2024. http://dx.doi.org/10.1109/sose62659.2024.10620935.
Pełny tekst źródłaMishra, Dhananjay, i Jyoti Ohri. "Review on Controlling Flexible Robotic Arm - System Identification of Intelligent Evolutionary Algorithm and Dynamic Modelling of Mechanical and Hydraulic Manipulator". W 2023 Second IEEE International Conference on Measurement, Instrumentation, Control and Automation (ICMICA), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/icmica61068.2024.10732548.
Pełny tekst źródłaMorales, Cecilia G., Dhruv Srikanth, Jack H. Good, Keith A. Dufendach i Artur Dubrawski. "Bifurcation Identification for Ultrasound-driven Robotic Cannulation". W 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 6990–96. IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10801749.
Pełny tekst źródłaMemar, Amirhossein H., i Ehsan T. Esfahani. "Modeling and Dynamic Parameter Identification of the SCHUNK Powerball Robotic Arm". W ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47703.
Pełny tekst źródłaD’Imperio, Mariapaola, Ferdinando Cannella, Luca Carbonari, Nahian Rahman i Darwin G. Caldwell. "Dynamic Modelling and Analysis of an Articulated Robotic Leg". W ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47140.
Pełny tekst źródłaBalabantaray, Bunil Kumar, i Bibhuti Bhusan Biswal. "Part identification in robotic assembly using vision system". W Sixth International Conference on Machine Vision (ICMV 13), redaktorzy Branislav Vuksanovic, Jianhong Zhou i Antanas Verikas. SPIE, 2013. http://dx.doi.org/10.1117/12.2051309.
Pełny tekst źródłaCheng, Marvin, i Ezzat Bakhoum. "Tracking Control Design and Implementation of Multiaxial Controller for Social Robotic Devices". W ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-70510.
Pełny tekst źródłaVakil, Mohammad, Reza Fotouhi i Peter N. Nikiforuk. "Parameter Identification of a Friction Model for Robotic Joints". W ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-29141.
Pełny tekst źródłaRaporty organizacyjne na temat "Robotic system identification"
Moore, Christina J. Development of an Integrated Robotic Radioisotope Identification and Location System. Fort Belvoir, VA: Defense Technical Information Center, maj 2009. http://dx.doi.org/10.21236/ada548792.
Pełny tekst źródłaBechar, Avital, Shimon Nof i Yang Tao. Development of a robotic inspection system for early identification and locating of biotic and abiotic stresses in greenhouse crops. United States Department of Agriculture, styczeń 2016. http://dx.doi.org/10.32747/2016.7600042.bard.
Pełny tekst źródłaBurks, Thomas F., Victor Alchanatis i Warren Dixon. Enhancement of Sensing Technologies for Selective Tree Fruit Identification and Targeting in Robotic Harvesting Systems. United States Department of Agriculture, październik 2009. http://dx.doi.org/10.32747/2009.7591739.bard.
Pełny tekst źródła