Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Robots de terrain.

Artykuły w czasopismach na temat „Robots de terrain”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Robots de terrain”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Luneckas, Tomas, Mindaugas Luneckas, and Dainius Udris. "Terrain Irregularity Sensing by Evaluating Feet Coordinate Standard Deviation." Applied Sciences 15, no. 1 (2025): 411. https://doi.org/10.3390/app15010411.

Pełny tekst źródła
Streszczenie:
Locomotion over rough terrain is still a problem yet to be solved for legged robots. One of the problems arises from the inability to identify terrain roughness during locomotion, which could be crucial for decision-making and successful task completion. Our proposed terrain roughness method is inspired by the observation that humans can sense their limb position in space without looking at them, which allows us to estimate obstacle heights. This method is based on robot feet coordinate standard deviation (further referred to as SD) parameter evaluation. SD values could be categorized to repre
Style APA, Harvard, Vancouver, ISO itp.
2

Žák, Marek, Jaroslav Rozman, and František V. Zbořil. "Design and Control of 7-DOF Omni-directional Hexapod Robot." Open Computer Science 11, no. 1 (2020): 80–89. http://dx.doi.org/10.1515/comp-2020-0189.

Pełny tekst źródła
Streszczenie:
AbstractLegged robots have great potential to travel across various types of terrain. Their many degrees of freedom enable them to navigate through difficult terrains, narrow spaces or various obstacles and they can move even after losing a leg. However, legged robots mostly move quite slowly. This paper deals with the design and construction of an omni-directional seven degrees of freedom hexapod (i.e., six-legged) robot, which is equipped with omnidirectional wheels (two degrees of freedom are used, one for turning the wheel and one for the wheel itself) usable on flat terrain to increase tr
Style APA, Harvard, Vancouver, ISO itp.
3

Zhang, Yinglong, Baoru Huang, Meng Hong, Chao Huang, Guan Wang, and Min Guo. "A Terrain Classification Method for Quadruped Robots with Proprioception." Electronics 14, no. 6 (2025): 1231. https://doi.org/10.3390/electronics14061231.

Pełny tekst źródła
Streszczenie:
Acquiring terrain information during robot locomotion is essential for autonomous navigation, gait selection, and trajectory planning. Quadruped robots, due to their biomimetic structures, demonstrate enhanced traversability over complex terrains compared to other robotic platforms. Furthermore, the internal sensors of quadruped robots acquire rich terrain-related data during locomotion across diverse terrains. This study investigates the relationship between terrain characteristics and quadruped robots based on proprioception sensor data, and proposes a simple, efficient, and motion-independe
Style APA, Harvard, Vancouver, ISO itp.
4

ZHANG, HE, RUI WU, CHANGLE LI, et al. "ADAPTIVE MOTION PLANNING FOR HITCR-II HEXAPOD ROBOT." Journal of Mechanics in Medicine and Biology 17, no. 07 (2017): 1740040. http://dx.doi.org/10.1142/s0219519417400401.

Pełny tekst źródła
Streszczenie:
Multi-legged robots have the ability to traverse rugged terrain and can surmount the obstacles, which are impossible for being overcome by wheeled robots. In this regard, six-legged (hexapod) robots are considered to provide the best combination of adequate adaptability and control complexity. Their motion planning envisages calculating sequences of footsteps and body posture, accounting for the influence of terrain shape, in order to produce the appropriate foot-end trajectory and ensure stable and flexible motion of hexapod robots on the rugged terrain. In this study, a high-order polynomial
Style APA, Harvard, Vancouver, ISO itp.
5

Hao, Qian, Zhaoba Wang, Junzheng Wang, and Guangrong Chen. "Stability-Guaranteed and High Terrain Adaptability Static Gait for Quadruped Robots." Sensors 20, no. 17 (2020): 4911. http://dx.doi.org/10.3390/s20174911.

Pełny tekst źródła
Streszczenie:
Stability is a prerequisite for legged robots to execute tasks and traverse rough terrains. To guarantee the stability of quadruped locomotion and improve the terrain adaptability of quadruped robots, a stability-guaranteed and high terrain adaptability static gait for quadruped robots is addressed. Firstly, three chosen stability-guaranteed static gaits: intermittent gait 1&2 and coordinated gait are investigated. In addition, then the static gait: intermittent gait 1, which is with the biggest stability margin, is chosen to do a further research about quadruped robots walking on rough te
Style APA, Harvard, Vancouver, ISO itp.
6

Cruz Ulloa, Christyan, Lourdes Sánchez, Jaime Del Cerro, and Antonio Barrientos. "Deep Learning Vision System for Quadruped Robot Gait Pattern Regulation." Biomimetics 8, no. 3 (2023): 289. http://dx.doi.org/10.3390/biomimetics8030289.

Pełny tekst źródła
Streszczenie:
Robots with bio-inspired locomotion systems, such as quadruped robots, have recently attracted significant scientific interest, especially those designed to tackle missions in unstructured terrains, such as search-and-rescue robotics. On the other hand, artificial intelligence systems have allowed for the improvement and adaptation of the locomotion capabilities of these robots based on specific terrains, imitating the natural behavior of quadruped animals. The main contribution of this work is a method to adjust adaptive gait patterns to overcome unstructured terrains using the ARTU-R (A1 Res
Style APA, Harvard, Vancouver, ISO itp.
7

Sutar, Amey V., B. V. Hubballi, and Akash S. Bhosale. "Design and Development of a Four-Wheeled Mobile Robot (WMR) for Any Terrain." Journal of Mechanical Robotics 10, no. 1 (2025): 13–20. https://doi.org/10.46610/jomr.2025.v10i01.002.

Pełny tekst źródła
Streszczenie:
This paper presents the design, development, and analysis of an all-terrain Wheeled Mobile Robot (WMR). A Wheeled Mobile Robot (WMR) is an autonomous robot that uses wheels for locomotion, allowing it to move efficiently on flat surfaces. These robots are commonly used in various applications, from industrial automation to service robots and research platforms. The robot aims to achieve high mobility on diverse terrains, remote teleoperation, and an effective payload handling capability. The research includes the design and implementation of the mechanical structure, electronic components, con
Style APA, Harvard, Vancouver, ISO itp.
8

Hashimoto, Kenji, Yusuke Sugahara, Hun-Ok Lim, and Atsuo Takanishi. "Biped Landing Pattern Modification Method and Walking Experiments in Outdoor Environment." Journal of Robotics and Mechatronics 20, no. 5 (2008): 775–84. http://dx.doi.org/10.20965/jrm.2008.p0775.

Pełny tekst źródła
Streszczenie:
Many researchers have studied walking stability control for biped robots, most of which involve highly precise acceleration controls based on robot model mechanics. Modeling error, however, makes the control algorithms used difficult to apply to biped walking robots intended to transport human users. The “landing pattern modification method” we propose is based on nonlinear admittance control. Theoretical compliance displacement calculated from walking patterns is compared to actual compliance displacement, when a robot's foot contacts slightly uneven terrain. Terrain height is detected and th
Style APA, Harvard, Vancouver, ISO itp.
9

Xue, Yuquan, Liming Wang, Bi He, Yonghui Zhao, Yang Wang, and Longmei Li. "Research on Environmental Adaptability of Force–Position Hybrid Control for Quadruped Robots Based on Model Predictive Control." Electronics 14, no. 8 (2025): 1604. https://doi.org/10.3390/electronics14081604.

Pełny tekst źródła
Streszczenie:
This study proposes a force–position hybrid control method for quadruped robots based on the Model Predictive Control (MPC) algorithm, aiming to address the challenges of stability and adaptability in complex terrain environments. Traditional control methods for quadruped robots are often based on simplified models, neglecting the impact of complex terrains and unstructured environments on control performance. To enhance the real-world performance of quadruped robots, this paper employs the MPC algorithm to integrate force and position control to achieve precise force–position hybrid regulatio
Style APA, Harvard, Vancouver, ISO itp.
10

Chen, Yang, Yao Wu, Wei Zeng, and Shaoyi Du. "Kinematics Model Estimation of 4W Skid-Steering Mobile Robots Using Visual Terrain Classification." Journal of Robotics 2023 (October 11, 2023): 1–12. http://dx.doi.org/10.1155/2023/1632563.

Pełny tekst źródła
Streszczenie:
Accurate real-time kinematics model is very important for the control of a skid-steering mobile robot. In this study, the kinematics model of the skid-steering mobile robots was first designed based on instantaneous rotation centers (ICRs). Then, the extended Kalman filter (EKF) technique was applied to obtain the parameters of ICRs under the same specific terrain online. To adapt to different terrain environments, the fractal dimension-based SFTA (segmentation-based fractal texture analysis) method was used to extract features of different terrains, and the k-nearest neighbor (KNN) method was
Style APA, Harvard, Vancouver, ISO itp.
11

Pecie, Robert Florian, Mihai Olimpiu Tătar, and Călin Rusu. "Studies on mobile robots for all types of terrain." MATEC Web of Conferences 343 (2021): 08015. http://dx.doi.org/10.1051/matecconf/202134308015.

Pełny tekst źródła
Streszczenie:
In the first part of the paper, the authors present the characteristics of the robots for all types of terrain. In the second part, two categories of robots are proposed: a robot with hybrid locomotion system and a modular robot. For the last category, if different modules are combined, a family of modular robots adaptable to different types of terrain can be obtained. The solutions proposed by the authors allow the study of the mobility and adaptability of robots to different types of terrain.
Style APA, Harvard, Vancouver, ISO itp.
12

Huang, Han, Yu Feng, Xiong Yang, Liu Yang, and Yajing Shen. "An Insect-Inspired Terrains-Adaptive Soft Millirobot with Multimodal Locomotion and Transportation Capability." Micromachines 13, no. 10 (2022): 1578. http://dx.doi.org/10.3390/mi13101578.

Pełny tekst źródła
Streszczenie:
Inspired by the efficient locomotion of insects in nature, researchers have been developing a diverse range of soft robots with simulated locomotion. These robots can perform various tasks, such as carrying medicines and collecting information, according to their movements. Compared to traditional rigid robots, flexible robots are more adaptable and terrain-immune and can even interact safely with people. Despite the development of biomimetic principles for soft robots, how their shapes, morphology, and actuation systems respond to the surrounding environments and stimuli still need to be impr
Style APA, Harvard, Vancouver, ISO itp.
13

Li, Daxian, Wu Wei, and Zhiying Qiu. "Combined Reinforcement Learning and CPG Algorithm to Generate Terrain-Adaptive Gait of Hexapod Robots." Actuators 12, no. 4 (2023): 157. http://dx.doi.org/10.3390/act12040157.

Pełny tekst źródła
Streszczenie:
Terrain adaptation research can significantly improve the motion performance of hexapod robots. In this paper, we propose a method that combines reinforcement learning with a central pattern generator (CPG) to enhance the terrain adaptation of hexapod robots in terms of gait planning. The hexapod robot’s complex task presents a high-dimensional observation and action space, which makes it challenging to directly apply reinforcement learning to robot control. Therefore, we utilize the CPG algorithm to generate the rhythmic gait while compressing the action space dimension of the agent. Addition
Style APA, Harvard, Vancouver, ISO itp.
14

Dr., M. Sampath Kumar, Mohanty Anchal, and Beesu |. E. Sai Kiran Meghana. "All Terrain Offensive and Defensive Robot." International Journal of Trend in Scientific Research and Development 3, no. 3 (2019): 1438–40. https://doi.org/10.31142/ijtsrd23370.

Pełny tekst źródła
Streszczenie:
Generally, various risky tasks or certain difficult operations cannot be done completely by humans and thus there is need for change in present era. As robots play vital roles in different fields of industries, medical, colleges, home appliances, military and defence, thus robots can be good and effective option for such difficult purposes. The proposed work is to develop an all terrain robot prototype. The robots which are presently in the market works on simple terrains while this project claims to make a prototype which can work on plain surfaces as well as rough surfaces such as forests, h
Style APA, Harvard, Vancouver, ISO itp.
15

Li, Xu, Songyuan Zhang, Haitao Zhou, Haibo Feng, and Yili Fu. "Locomotion Adaption for Hydraulic Humanoid Wheel-Legged Robots Over Rough Terrains." International Journal of Humanoid Robotics 18, no. 01 (2021): 2150001. http://dx.doi.org/10.1142/s0219843621500018.

Pełny tekst źródła
Streszczenie:
Compared with the traditional hydraulic humanoid robots, the WLR-II, a novel hydraulic wheel-legged robot developed by using hose-less design, can significantly increase the reliability and maneuverability. The WLR-II combines the rough-terrain capability of legs with the efficiency of wheels. In this paper, a novel framework called rough-terrain adaption framework (RTAF) is presented which allows WLR-II to move on both flat terrains and terrains with unmodeled contact dynamics. RTAF is a hierarchical framework, which has a high-level balance controller and a low-level impedance controller tha
Style APA, Harvard, Vancouver, ISO itp.
16

Jia, Yan, Xiao Luo, Baoling Han, Guanhao Liang, Jiaheng Zhao, and Yuting Zhao. "Stability Criterion for Dynamic Gaits of Quadruped Robot." Applied Sciences 8, no. 12 (2018): 2381. http://dx.doi.org/10.3390/app8122381.

Pełny tekst źródła
Streszczenie:
Dynamic-stability criteria are crucial for robot’s motion planning and balance recovery. Nevertheless, few studies focus on the motion stability of quadruped robots with dynamic gait, none of which have accurately evaluated the robots’ stability. To fill the gaps in this field, this paper presents a new stability criterion for the motion of quadruped robots with dynamic gaits running over irregular terrain. The traditional zero-moment point (ZMP) is improved to analyze the motion on irregular terrain precisely for dynamic gaits. A dynamic-stability criterion and measurement are proposed to det
Style APA, Harvard, Vancouver, ISO itp.
17

Mamiya, Shotaro, Shigenori Sano, and Naoki Uchiyama. "Foot Structure with Divided Flat Soles and Springs for Legged Robots and Experimental Verification." Journal of Robotics and Mechatronics 28, no. 6 (2016): 799–807. http://dx.doi.org/10.20965/jrm.2016.p0799.

Pełny tekst źródła
Streszczenie:
[abstFig src='/00280006/03.jpg' width='300' text='Robotic foot adaptable to rough terrain' ] Practical ambulation must be realized by walking robots to enable social and industrial support by walking robots in human living environments. A four-legged robot that walks through rough terrain effectively does not erase the fact that most legged robots – particularly biped robots – have difficulty negotiating rough terrain. We focus below on a foot structure and landing control for enabling any type of legged robot to walk through rough terrain. When a walking robot lands on the ground, it is diffi
Style APA, Harvard, Vancouver, ISO itp.
18

Benyeogor, Mbadiwe S., Oladayo O. Olakanmi, and Sushant Kumar. "Design of Quad-Wheeled Robot for Multi-Terrain Navigation." Scientific Review, no. 62 (February 5, 2020): 14–22. http://dx.doi.org/10.32861/sr.62.14.22.

Pełny tekst źródła
Streszczenie:
Wheeled robots are often utilized for various remote sensing and telerobotic applications because of their ability to navigate through dynamic environments, mostly under the partial control of a human operator. To make these robots capable to traverse through terrains of rough and uneven topography, their driving mechanisms and controllers must be very efficient at producing and controlling large mechanical power with great precision in real-time, however small the robot may be. This paper discusses an approach for designing a quad-wheeled robot, which is wirelessly controlled with a personal
Style APA, Harvard, Vancouver, ISO itp.
19

Luneckas, Mindaugas, Tomas Luneckas, and Dainius Udris. "Leg placement algorithm for foot impact force minimization." International Journal of Advanced Robotic Systems 15, no. 1 (2018): 172988141775151. http://dx.doi.org/10.1177/1729881417751512.

Pełny tekst źródła
Streszczenie:
Walking is considered to be a rather complicated task for autonomous robots. Sustaining dynamic stability, adopting different gaits, and calculating correct foot placement are a necessity to overcome irregular terrain, various environments and completing a range of assignments. Besides that, certain assignments require that robots have to walk on fragile surfaces without damaging it. Furthermore, under some other circumstances, if walking is careless, robots could suffer damage caused by the impact of the terrain. Foot placement, leg motion speed must be controlled to avoid braking surface or
Style APA, Harvard, Vancouver, ISO itp.
20

Zheng, Yilei, Yueqi Zhang, Jingjun Yu, Weidong Guo, and Yan Xie. "Terrain-Aware Hierarchical Control Framework for Dynamic Locomotion of Humanoid Robots." Electronics 14, no. 7 (2025): 1264. https://doi.org/10.3390/electronics14071264.

Pełny tekst źródła
Streszczenie:
Dynamic locomotion capabilities on complex terrains constitute a critical requirement for humanoid robots in industrial manufacturing and emergency response applications. To address the fundamental challenges of terrain perception, underactuated dynamics planning, and foothold control in unstructured environments, this paper proposes a hierarchical planning and control framework that integrates terrain perception. The framework first segments the terrain to generate convex polygon constraints that characterize the terrain features. Subsequently, an optimization model is constructed based on no
Style APA, Harvard, Vancouver, ISO itp.
21

Bekhti, Mohammed Abdessamad, and Yuichi Kobayashi. "Regressed Terrain Traversability Cost for Autonomous Navigation Based on Image Textures." Applied Sciences 10, no. 4 (2020): 1195. http://dx.doi.org/10.3390/app10041195.

Pełny tekst źródła
Streszczenie:
The exploration of remote, unknown, rough environments by autonomous robots strongly depends on the ability of the on-board system to build an accurate predictor of terrain traversability. Terrain traversability prediction can be made more cost efficient by using texture information of 2D images obtained by a monocular camera. In cases where the robot is required to operate on a variety of terrains, it is important to consider that terrains sometimes contain spiky objects that appear as non-uniform in the texture of terrain images. This paper presents an approach to estimate the terrain traver
Style APA, Harvard, Vancouver, ISO itp.
22

Conduraru Slatineanu, Alina, Ioan Doroftei, and Ionel Conduraru. "Design and Kinematic Aspects of a Hybrid Locomotion Robot." Advanced Materials Research 1036 (October 2014): 764–69. http://dx.doi.org/10.4028/www.scientific.net/amr.1036.764.

Pełny tekst źródła
Streszczenie:
Comparing to wheeled robots, legged ones are more flexible and mobile on difficult terrain, where wheeled robots cannot go. Wheels excel on flat surfaces or specially prepared surfaces, where wheeled robots are faster than legged machines. Also, wheeled platforms have simpler mechanical architecture and control algorithms. But they do not perform well when terrain is uneven, which is the case in real life, legged robots becoming more interesting to research and explore. Hybrid locomotion systems were developed to exploit the terrain adaptability of legs in rough terrain and simpler control as
Style APA, Harvard, Vancouver, ISO itp.
23

Xu, He, X. Z. Gao, Yan Xu, et al. "Continuous mobility of mobile robots with a special ability for overcoming driving failure on rough terrain." Robotica 35, no. 10 (2016): 2076–96. http://dx.doi.org/10.1017/s0263574716000606.

Pełny tekst źródła
Streszczenie:
SUMMARYFor wheeled mobile robots moving in rough terrains or uncertain environments, driving failure will be encountered when trafficability failure occurs. Continuous mobility of mobile robots with special ability for overcoming driving failure on rough terrain has rarely been considered. This study was conducted using a four-wheel-steering and four-wheel-driving mobile robot equipped with a binocular visual system. First, quasi-static force analysis is carried out to understand the effects of different driving-failure modes on the mobile robot while moving on rough terrain. Secondly, to make
Style APA, Harvard, Vancouver, ISO itp.
24

Zong, Chengguo, Zhijian Ji, Junzhi Yu, and Haisheng Yu. "An angle-changeable tracked robot with human-robot interaction in unstructured environments." Assembly Automation 40, no. 4 (2020): 565–75. http://dx.doi.org/10.1108/aa-11-2018-0231.

Pełny tekst źródła
Streszczenie:
Purpose The purpose of this paper is to study the adaptability of the tracked robot in complex working environment. It proposes an angle-changeable tracked robot with human–robot interaction in unstructured environment. The study aims to present the mechanical structure and human–robot interaction control system of the tracked robot and analyze the static stability of the robot working in three terrains, i.e. rugged terrain, sloped terrain and stairs. Design/methodology/approach The paper presents the mechanical structure and human–robot interaction control system of the tracked robot. To prev
Style APA, Harvard, Vancouver, ISO itp.
25

Zhuang, Hongchao, Jiaju Wang, Ning Wang, et al. "A Review of Foot–Terrain Interaction Mechanics for Heavy-Duty Legged Robots." Applied Sciences 14, no. 15 (2024): 6541. http://dx.doi.org/10.3390/app14156541.

Pełny tekst źródła
Streszczenie:
Heavy-duty legged robots have played an important role in material transportation, planet exploration, and other fields due to their unique advantages in complex and harsh terrain environments. The instability phenomenon of the heavy-duty legged robots often arises during the dynamic interactions between the supporting feet and the intricate terrains, which significantly impact the ability of the heavy-duty legged robots to move rapidly and accomplish tasks. Therefore, it is necessary to assess the mechanical behavior of foot–terrain interactions for the heavy-duty legged robots. In order to a
Style APA, Harvard, Vancouver, ISO itp.
26

Bae, Junseong, Myeongjin Kim, Bongsub Song, Maolin Jin, and Dongwon Yun. "Snake Robot with Driving Assistant Mechanism." Applied Sciences 10, no. 21 (2020): 7478. http://dx.doi.org/10.3390/app10217478.

Pełny tekst źródła
Streszczenie:
Snake robots are composed of multiple links and joints and have a high degree of freedom. They can perform various motions and can overcome various terrains. Snake robots need additional driving algorithms and sensors that acquire terrain data in order to overcome rough terrains such as grasslands and slopes. In this study, we propose a driving assistant mechanism (DAM), which assists locomotion without additional driving algorithms and sensors. In this paper, we confirmed that the DAM prevents a roll down on a slope and increases the locomotion speed through dynamic simulation and experiments
Style APA, Harvard, Vancouver, ISO itp.
27

Chen, Liuhongxu, Ping Du, Pengfei Zhan, and Bo Xie. "Gait Learning for Hexapod Robot Facing Rough Terrain Based on Dueling-DQN Algorithm." International Journal of Computer Science and Information Technology 2, no. 1 (2024): 408–24. http://dx.doi.org/10.62051/ijcsit.v2n1.44.

Pełny tekst źródła
Streszczenie:
In the handling of dangerous goods in explosive environments, robots are increasingly being used instead of human operators. Robots designed for operation in explosive environments are mostly equipped with tracked structures, which, due to their limited terrain adaptability, struggle to movement rugged landscapes. Hexapod robots, with their excellent maneuverability and adaptability, possess advantages in completing hazardous material handling tasks in such rugged terrains. One current challenge lies in enabling hexapod robots to autonomously adjust their gaits to cope with rugged terrain. Thi
Style APA, Harvard, Vancouver, ISO itp.
28

Luneckas, Mindaugas, Tomas Luneckas, Jonas Kriaučiūnas, et al. "Hexapod Robot Gait Switching for Energy Consumption and Cost of Transport Management Using Heuristic Algorithms." Applied Sciences 11, no. 3 (2021): 1339. http://dx.doi.org/10.3390/app11031339.

Pełny tekst źródła
Streszczenie:
Due to the prospect of using walking robots in an impassable environment for tracked or wheeled vehicles, walking locomotion is one of the most remarkable accomplishments in robotic history. Walking robots, however, are still being deeply researched and created. Locomotion over irregular terrain and energy consumption are among the major problems. Walking robots require many actuators to cross different terrains, leading to substantial consumption of energy. A robot must be carefully designed to solve this problem, and movement parameters must be correctly chosen. We present a minimization of
Style APA, Harvard, Vancouver, ISO itp.
29

Zhang, Yilin, Jiayu Zeng, Huimin Sun, Honglin Sun, and Kenji Hashimoto. "Dual-Layer Reinforcement Learning for Quadruped Robot Locomotion and Speed Control in Complex Environments." Applied Sciences 14, no. 19 (2024): 8697. http://dx.doi.org/10.3390/app14198697.

Pełny tekst źródła
Streszczenie:
Walking robots have been widely applied in complex terrains due to their good terrain adaptability and trafficability. However, in some environments (such as disaster relief, field navigation, etc.), although a single strategy can adapt to various environments, it is unable to strike a balance between speed and stability. Existing control schemes like model predictive control (MPC) and traditional incremental control can manage certain environments. However, they often cannot balance speed and stability well. These methods usually rely on a single strategy and lack adaptability for dynamic adj
Style APA, Harvard, Vancouver, ISO itp.
30

Žák, Marek, Jaroslav Rozman, and František V. Zbořil. "Energy Efficiency of a Wheeled Bio-Inspired Hexapod Walking Robot in Sloping Terrain." Robotics 12, no. 2 (2023): 42. http://dx.doi.org/10.3390/robotics12020042.

Pełny tekst źródła
Streszczenie:
Multi-legged robots, such as hexapods, have great potential to navigate challenging terrain. However, their design and control are usually much more complex and energy-demanding compared to wheeled robots. This paper presents a wheeled six-legged robot with five degrees of freedom, that is able to move on a flat surface using wheels and switch to gait in rugged terrain, which reduces energy consumption. The novel joint configuration mimics the structure of insect limbs and allows our robot to overcome difficult terrain. The wheels reduce energy consumption when moving on flat terrain and the t
Style APA, Harvard, Vancouver, ISO itp.
31

Ranjan, Rahul, Seungjae Lee, and Joongeup Kye. "Design of Tactical Multipurpose All–Terrain Mobile Robot." International Journal of Membrane Science and Technology 10, no. 2 (2023): 2224–37. http://dx.doi.org/10.15379/ijmst.v10i2.2799.

Pełny tekst źródła
Streszczenie:
Robotic systems that can assist soldiers in dangerous operations are essential technologies that improve safety and efficiency. This paper presents the development of mobile robots that can assist soldiers with target acquisition and surveillance on the battlefield. We have built a prototype that incorporates a firearm system that can perform shooting tasks. Our aim is to design and develop mobile robots that can cope with challenging scenarios such as terrorist attacks and rescue missions. Our robots can transmit photographic images or live streaming via a spy camera, and based on the visual
Style APA, Harvard, Vancouver, ISO itp.
32

Luneckas, Tomas. "EVALUATING TERRAIN IRREGULARITY BY ROBOT POSTURE / PAVIRŠIAUS NETOLYGUMO VERTINIMAS PAGAL ROBOTO PADĖTĮ." Mokslas - Lietuvos ateitis 3, no. 1 (2011): 96–99. http://dx.doi.org/10.3846/mla.2011.020.

Pełny tekst źródła
Streszczenie:
A method that allows evaluate the terrain irregularity by a robot posture is presented in this paper. A necessity to evaluate terrain irregularity is pointed out. Description of irregular terrain is given. A possibility to evaluate terrain irregularity by feet coordinate standard deviation is proposed. When deviation is σ = 0, all robots are in one plane. Bigger σ the more robot legs are scattered, meaning robot is walking in irregular terrain. A method to evaluate robot horizontality according to terrain by position of three planes is introduced.
Style APA, Harvard, Vancouver, ISO itp.
33

Zha, Fusheng, Chen Chen, Wei Guo, Penglong Zheng, and Junyi Shi. "A free gait controller designed for a heavy load hexapod robot." Advances in Mechanical Engineering 11, no. 3 (2019): 168781401983836. http://dx.doi.org/10.1177/1687814019838369.

Pełny tekst źródła
Streszczenie:
As macroscopic rough terrains are time varying and full of local topographic mutations, stable locomotions of legged robots moving through such terrains in a fixed gait form can be hardly obtained. This problem becomes more severe as the size and weight of the robot increase. An ideal pre-planned gait changing method can also be hardly designed due to the same limitations. Aiming to solve the problem, a new kind of free gait controller applied to a large-scale hexapod robot with heavy load is developed. The controller consists of two parts, a free gait planner and a gait regulator. Based on th
Style APA, Harvard, Vancouver, ISO itp.
34

Kouame, Yann Olivier Akansie, C. Biradar Rajashekhar, Rajendra Karthik, and D. Devanagavi Geetha. "A terrain data collection sensor box towards a better analysis of terrains conditions." IAES International Journal of Artificial Intelligence (IJ-AI) 13, no. 4 (2024): 4388–402. https://doi.org/10.11591/ijai.v13.i4.pp4388-4402.

Pełny tekst źródła
Streszczenie:
Autonomous mobile robots are increasingly used across various applications, relying on multiple sensors for environmental awareness and efficient task execution. Given the unpredictability of human environments, versatility is crucial for these robots. Their performance is largely determined by how they perceive their surroundings. This paper introduces a machine learning (ML) approach focusing on land conditions to enhance a robot’s locomotion. The authors propose a method to classify terrains for data collection, involving the design of an apparatus to gather field data. This design is
Style APA, Harvard, Vancouver, ISO itp.
35

Olivier Akansie, Kouame Yann, Rajashekhar C. Biradar, Karthik Rajendra, and Geetha D. Devanagavi. "A terrain data collection sensor box towards a better analysis of terrains conditions." IAES International Journal of Artificial Intelligence (IJ-AI) 13, no. 4 (2024): 4388. http://dx.doi.org/10.11591/ijai.v13.i4.pp4388-4402.

Pełny tekst źródła
Streszczenie:
<p>Autonomous mobile robots are increasingly used across various applications, relying on multiple sensors for environmental awareness and efficient task execution. Given the unpredictability of human environments, versatility is crucial for these robots. Their performance is largely determined by how they perceive their surroundings. This paper introduces a machine learning (ML) approach focusing on land conditions to enhance a robot’s locomotion. The authors propose a method to classify terrains for data collection, involving the design of an apparatus to gather field data. This design
Style APA, Harvard, Vancouver, ISO itp.
36

Mrva, Jakub, Martin Stejskal, and Jan Faigl. "ON TRAVERSABILITY COST EVALUATION FROM PROPRIOCEPTIVE SENSING FOR A CRAWLING ROBOT." Acta Polytechnica CTU Proceedings 2, no. 2 (2015): 34–39. http://dx.doi.org/10.14311/app.2015.1.0034.

Pełny tekst źródła
Streszczenie:
Traversability characteristics of the robot working environment are crucial in planning an efficient path for a robot operating in rough unstructured areas. In the literature, approaches to wheeled or tracked robots can be found, but a relatively little attention is given to walking multi-legged robots. Moreover, the existing approaches for terrain traversability assessment seem to be focused on gathering key features from a terrain model acquired from range data or camera image and only occasionally supplemented with proprioceptive sensing that expresses the interaction of the robot with the
Style APA, Harvard, Vancouver, ISO itp.
37

Conduraru Slatineanu, Alina, Ioan Doroftei, Ionel Conduraru, and Dorin Luca. "Hexapod Locomotion of a Leg-Wheel Hybrid Mobile Robot." Applied Mechanics and Materials 658 (October 2014): 581–86. http://dx.doi.org/10.4028/www.scientific.net/amm.658.581.

Pełny tekst źródła
Streszczenie:
Legged vehicles are more flexible and mobile on difficult terrain, comparing to wheeled robots. Wheels are convenient on flat surfaces or specially prepared surfaces, wheeled vehicles being faster than legged ones. Also, wheeled robots are simpler in terms of mechanical architecture and control algorithms. But they do not perform well on uneven terrain, which is the case in real life, legged robots becoming more interesting to research and explore. This is why hybrid locomotion systems have been developed, in order to exploit the terrain adaptability of legs in rough terrain and simpler contro
Style APA, Harvard, Vancouver, ISO itp.
38

Zhao, Kai, Mingming Dong, and Liang Gu. "A New Terrain Classification Framework Using Proprioceptive Sensors for Mobile Robots." Mathematical Problems in Engineering 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/3938502.

Pełny tekst źródła
Streszczenie:
Mobile robots that operate in real-world environments interact with the surroundings to generate complex acoustics and vibration signals, which carry rich information about the terrain. This paper presents a new terrain classification framework that utilizes both acoustics and vibration signals resulting from the robot-terrain interaction. As an alternative to handcrafted domain-specific feature extraction, a two-stage feature selection method combining ReliefF and mRMR algorithms was developed to select optimal feature subsets that carry more discriminative information. As different data sour
Style APA, Harvard, Vancouver, ISO itp.
39

Bazeille, Stéphane, Jesus Ortiz, Francesco Rovida, et al. "Active camera stabilization to enhance the vision of agile legged robots." Robotica 35, no. 4 (2015): 942–60. http://dx.doi.org/10.1017/s0263574715000909.

Pełny tekst źródła
Streszczenie:
SUMMARYLegged robots have the potential to navigate in more challenging terrains than wheeled robots. Unfortunately, their control is more demanding, because they have to deal with the common tasks of mapping and path planning as well as more specific issues of legged locomotion, like balancing and foothold planning. In this paper, we present the integration and the development of a stabilized vision system on the fully torque-controlled hydraulically actuated quadruped robot (HyQ). The active head added onto the robot is composed of a fast pan and tilt unit (PTU) and a high-resolution wide an
Style APA, Harvard, Vancouver, ISO itp.
40

Gao, Xin’an, Xiaorong Guan, Yanlong Yang, and Jingmin Zhang. "Design and Ground Performance Evaluation of a Multi-Joint Wheel-Track Composite Mobile Robot for Enhanced Terrain Adaptability." Applied Sciences 13, no. 12 (2023): 7270. http://dx.doi.org/10.3390/app13127270.

Pełny tekst źródła
Streszczenie:
The tracked-wheeled mobile robot has gained significant attention in military, agricultural, construction, and other fields due to its exceptional mobility and off-road capabilities. Therefore, it is an ideal choice for reconnaissance and exploration tasks. In this study, we proposed a multi-jointed tracked-wheeled compound mobile robot that can overcome various terrains and obstacles. Based on the characteristics of multi-jointed robots, we designed two locomotion modes for the robot to climb stairs and established the kinematics/dynamics equations for its land movement. We evaluated the robo
Style APA, Harvard, Vancouver, ISO itp.
41

Zhu, Yaguang, Kailu Luo, Chao Ma, Qiong Liu, and Bo Jin. "Superpixel Segmentation Based Synthetic Classifications with Clear Boundary Information for a Legged Robot." Sensors 18, no. 9 (2018): 2808. http://dx.doi.org/10.3390/s18092808.

Pełny tekst źródła
Streszczenie:
In view of terrain classification of the autonomous multi-legged walking robots, two synthetic classification methods for terrain classification, Simple Linear Iterative Clustering based Support Vector Machine (SLIC-SVM) and Simple Linear Iterative Clustering based SegNet (SLIC-SegNet), are proposed. SLIC-SVM is proposed to solve the problem that the SVM can only output a single terrain label and fails to identify the mixed terrain. The SLIC-SegNet single-input multi-output terrain classification model is derived to improve the applicability of the terrain classifier. Since terrain classificat
Style APA, Harvard, Vancouver, ISO itp.
42

Zheng, Qingyuan, Yu Tian, Yang Deng, Xianjin Zhu, Zhang Chen, and Bing Liang. "Reinforcement Learning-Based Control of Single-Track Two-Wheeled Robots in Narrow Terrain." Actuators 12, no. 3 (2023): 109. http://dx.doi.org/10.3390/act12030109.

Pełny tekst źródła
Streszczenie:
The single-track two-wheeled (STTW) robot has the advantages of small size and flexibility, and it is suitable for traveling in narrow terrains of mountains and jungles. In this article, a reinforcement learning control method for STTW robots is proposed for driving fast in narrow terrain with limited visibility and line-of-sight occlusions. The proposed control scheme integrates path planning, trajectory tracking, and balancing control in a single framework. Based on this method, the state, action, and reward function are defined for narrow terrain passing tasks. At the same time, we design t
Style APA, Harvard, Vancouver, ISO itp.
43

Rafeeq, Mohammed, Siti Fauziah Toha, Salmiah Ahmad, Mohd Asyraf Razib, Ahmad Syahrin Idris, and Mohammad Osman Tokhi. "Amphibious Robots Locomotion Strategies in Unstructured Complex Environments: A Review." Platform : A Journal of Engineering 8, no. 1 (2024): 12. http://dx.doi.org/10.61762/pajevol8iss1art26197.

Pełny tekst źródła
Streszczenie:
In the previous literature, amphibious robots focused mainly on locomotion in underwater and flat land surface manoeuvring. Few amphibious robots focused on unstructured land environments. The amphibious robot designs were more emphasised in academics, leading to more work done in building amphibious robots that mimic biological amphibians, imitating the geometry and overall functionality of the amphibious robots. Developing amphibious robots with propulsive mechanisms for manoeuvring in a water environment received more attention than other functionalities like adaptability on rough natural t
Style APA, Harvard, Vancouver, ISO itp.
44

SZABARI, MIKULAS, and RADEK KNOFLICEK. "LEGGED ROBOT LOCOMOTION IN RESISTIVE TERRAIN: A COMPARISON OF TWO METHODS." MM Science Journal 2022, no. 4 (2022): 6040–48. http://dx.doi.org/10.17973/mmsj.2022_11_2022047.

Pełny tekst źródła
Streszczenie:
Every day new technology appears. In the field of legged robots, it is not otherwise. LIDAR vision, artificial intelligence, computing power and new drives help to improve the state of legged robots. One of the unsolved problems is still terrain navigation, such as locomotion in resistive terrain. To determine the correct locomotion, research must be carried out. In this paper, we compare two different situations, where a six-legged robot walks through variable resistive terrain with different gait in the first one and with different leg trajectories in the swing phase in the second one.
Style APA, Harvard, Vancouver, ISO itp.
45

Yang, Kuo, Xinhui Liu, Changyi Liu, and Ziwei Wang. "Motion-Control Strategy for a Heavy-Duty Transport Hexapod Robot on Rugged Agricultural Terrains." Agriculture 13, no. 11 (2023): 2131. http://dx.doi.org/10.3390/agriculture13112131.

Pełny tekst źródła
Streszczenie:
Legged agricultural transportation robots are efficient tools that can autonomously transport goods over agricultural terrain, and their introduction helps to improve the efficiency and quality of agricultural production. Their effectiveness depends on their adaptability to different environmental conditions, which is especially true for heavy-duty robots that exert ground forces. Therefore, this study proposes a motion-control strategy for a heavy-duty transport hexapod robot. Two critical tasks were accomplished in this paper: (1) estimating the support surface angle based on the robot’s foo
Style APA, Harvard, Vancouver, ISO itp.
46

Nakajima, Shuro. "RT-Mover: a rough terrain mobile robot with a simple leg–wheel hybrid mechanism." International Journal of Robotics Research 30, no. 13 (2011): 1609–26. http://dx.doi.org/10.1177/0278364911405697.

Pełny tekst źródła
Streszczenie:
There is a strong demand in many fields for practical robots, such as a porter robot and a personal mobility robot, that can move over rough terrain while carrying a load horizontally. We have developed a robot, called RT-Mover, which shows adequate mobility performance on targeted types of rough terrain. It has four drivable wheels and two leg-like axles but only five active shafts. A strength of this robot is that it realizes both a leg mode and a wheel mode in a simple mechanism. In this paper, the mechanical design concept is discussed. With an emphasis on minimizing the number of drive sh
Style APA, Harvard, Vancouver, ISO itp.
47

Huskić, Goran, Sebastian Buck, Matthieu Herrb, Simon Lacroix, and Andreas Zell. "High-speed path following control of skid-steered vehicles." International Journal of Robotics Research 38, no. 9 (2019): 1124–48. http://dx.doi.org/10.1177/0278364919859634.

Pełny tekst źródła
Streszczenie:
We present a robust control scheme for skid-steered vehicles that enables high-speed path following on challenging terrains. First, a kinematic model with experimentally identified parameters is constructed to describe the terrain-dependent motion of skid-steered vehicles. Using Lyapunov theory, a nonlinear control law is defined, guaranteeing the convergence of the vehicle to the path. To allow smooth and accurate motion at higher speeds, an additional linear velocity control scheme is proposed, which takes actuator saturation, path following error, and reachable curvatures into account. The
Style APA, Harvard, Vancouver, ISO itp.
48

Pookkuttath, Sathian, Raihan Enjikalayil Abdulkader, Mohan Rajesh Elara, and Prabakaran Veerajagadheswar. "AI-Enabled Vibrotactile Feedback-Based Condition Monitoring Framework for Outdoor Mobile Robots." Mathematics 11, no. 18 (2023): 3804. http://dx.doi.org/10.3390/math11183804.

Pełny tekst źródła
Streszczenie:
An automated Condition Monitoring (CM) and real-time controlling framework is essential for outdoor mobile robots to ensure the robot’s health and operational safety. This work presents a novel Artificial Intelligence (AI)-enabled CM and vibrotactile haptic-feedback-based real-time control framework suitable for deploying mobile robots in dynamic outdoor environments. It encompasses two sections: developing a 1D Convolutional Neural Network (1D CNN) model for predicting system degradation and terrain flaws threshold classes and a vibrotactile haptic feedback system design enabling a remote ope
Style APA, Harvard, Vancouver, ISO itp.
49

Dong, Yunlong, Wei Guo, Fusheng Zha, Yizhou Liu, Chen Chen, and Lining Sun. "A Vision-Based Two-Stage Framework for Inferring Physical Properties of the Terrain." Applied Sciences 10, no. 18 (2020): 6473. http://dx.doi.org/10.3390/app10186473.

Pełny tekst źródła
Streszczenie:
The friction and stiffness properties of the terrain are very important pieces of information for mobile robots in motion control, dynamics parameter adjustment, trajectory planning, etc. Inferring the friction and stiffness properties in advance can improve the safety, adaptability and reliability, and reduce the energy consumption of the robot. This paper proposes a vision-based two-stage framework for pre-estimating physical properties of the terrain. We established a field terrain image dataset with weak annotations. A semantic segmentation network that can segment terrains at the pixel le
Style APA, Harvard, Vancouver, ISO itp.
50

Marín Arciniegas, Jairo José, and Oscar Andrés Vivas Albán. "Design and Construction of a Snake-Like Robot Implementing Rectilinear and Sidewinding Gait Motions." TecnoLógicas 26, no. 56 (2022): e2412. http://dx.doi.org/10.22430/22565337.2412.

Pełny tekst źródła
Streszczenie:
Bio-inspired robots offer locomotion versatility in a wide variety of terrains that conventional robots cannot access. One such bio-inspired platform is snake-like robots, which are mechanisms designed to move like biological snakes. The aim of this paper was to implement and validate, through comparison in real and simulation tests on flat terrain, the design of a snake robot that allows movements in two perpendicular planes, by the application of three-dimensional locomotion modes. The prototype robot had a modular and sequential architecture composed of eight 3D printed segments. The necess
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!