Artykuły w czasopismach na temat „Ruthenium-based catalysts”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Ruthenium-based catalysts”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Singh, Keisham. "Recent Advances in C–H Bond Functionalization with Ruthenium-Based Catalysts." Catalysts 9, no. 2 (2019): 173. http://dx.doi.org/10.3390/catal9020173.
Pełny tekst źródłaNahra, Fady, and Catherine S. J. Cazin. "Sustainability in Ru- and Pd-based catalytic systems using N-heterocyclic carbenes as ligands." Chemical Society Reviews 50, no. 5 (2021): 3094–142. http://dx.doi.org/10.1039/c8cs00836a.
Pełny tekst źródłaWeissenberger, Tobias, Ralf Zapf, Helmut Pennemann, and Gunther Kolb. "Catalyst Coatings for Ammonia Decomposition in Microchannels at High Temperature and Elevated Pressure for Use in Decentralized and Mobile Hydrogen Generation." Catalysts 14, no. 2 (2024): 104. http://dx.doi.org/10.3390/catal14020104.
Pełny tekst źródłaReany, Ofer, and N. Gabriel Lemcoff. "Light guided chemoselective olefin metathesis reactions." Pure and Applied Chemistry 89, no. 6 (2017): 829–40. http://dx.doi.org/10.1515/pac-2016-1221.
Pełny tekst źródłaPodolean, Iunia, Mara Dogaru, Nicolae Cristian Guzo, et al. "Highly Efficient Ru-Based Catalysts for Lactic Acid Conversion to Alanine." Nanomaterials 14, no. 3 (2024): 277. http://dx.doi.org/10.3390/nano14030277.
Pełny tekst źródłaChen, Hui, Runxu Deng, Shixin Gao, and Feng Liu. "Preparation of porous iridium-ruthenium-based acidic water oxidation catalyst by ascorbic acid reduction and evaporation." Journal of Physics: Conference Series 2566, no. 1 (2023): 012017. http://dx.doi.org/10.1088/1742-6596/2566/1/012017.
Pełny tekst źródłaAbubakar, Oluwafemi David, and Thomas Hamann. "Ligand Design for Enhanced Ruthenium-Based Electrocatalytic Ammonia Oxidation." ECS Meeting Abstracts MA2025-01, no. 52 (2025): 2589. https://doi.org/10.1149/ma2025-01522589mtgabs.
Pełny tekst źródłaTruszkiewicz, Elżbieta, Wioletta Raróg-Pilecka, Magdalena Zybert, Malwina Wasilewska-Stefańska, Ewa Topolska, and Kamila Michalska. "Effect of the ruthenium loading and barium addition on the activity of ruthenium/carbon catalysts in carbon monoxide methanation." Polish Journal of Chemical Technology 16, no. 4 (2014): 106–10. http://dx.doi.org/10.2478/pjct-2014-0079.
Pełny tekst źródłaZhong, He Xiang, Hua Min Zhang, and Mei Ri Wang. "Oxygen Reduction Reaction on Carbon Supported Ruthenium-Based Electrocatalysts in PEMFC." Materials Science Forum 675-677 (February 2011): 97–100. http://dx.doi.org/10.4028/www.scientific.net/msf.675-677.97.
Pełny tekst źródłaMa, Peng, Jiaren Zhang, Xiaqian Wu, and Jianhui Wang. "Ruthenium Metathesis Catalysts with Imidazole Ligands." Catalysts 13, no. 2 (2023): 276. http://dx.doi.org/10.3390/catal13020276.
Pełny tekst źródłaDunn, E., and J. Tunge. "Decarboxylative Allylation of Ketone Enolates with Rh, Ir, and Mo." Latvian Journal of Chemistry 51, no. 1-2 (2012): 31–40. http://dx.doi.org/10.2478/v10161-012-0007-x.
Pełny tekst źródłaLovic, Jelena. "The kinetics and mechanism of methanol oxidation on Pt and PtRu catalysts in alkaline and acid media." Journal of the Serbian Chemical Society 72, no. 7 (2007): 709–12. http://dx.doi.org/10.2298/jsc0707709l.
Pełny tekst źródłaJawiczuk, Magdalena, Anna Marczyk, and Bartosz Trzaskowski. "Decomposition of Ruthenium Olefin Metathesis Catalyst." Catalysts 10, no. 8 (2020): 887. http://dx.doi.org/10.3390/catal10080887.
Pełny tekst źródłaMüller, Daniel S., Olivier Baslé, and Marc Mauduit. "A tutorial review of stereoretentive olefin metathesis based on ruthenium dithiolate catalysts." Beilstein Journal of Organic Chemistry 14 (December 7, 2018): 2999–3010. http://dx.doi.org/10.3762/bjoc.14.279.
Pełny tekst źródłaDaniel, Quentin, Lei Wang, Lele Duan, Fusheng Li, and Licheng Sun. "Tailored design of ruthenium molecular catalysts with 2,2′-bypyridine-6,6′-dicarboxylate and pyrazole based ligands for water oxidation." Dalton Transactions 45, no. 37 (2016): 14689–96. http://dx.doi.org/10.1039/c6dt01287f.
Pełny tekst źródłaVieri, Hizkia Manuel, Arash Badakhsh, and Sun Hee Choi. "Comparative Study of Ba, Cs, K, and Li as Promoters for Ru/La2Ce2O7-Based Catalyst for Ammonia Synthesis." International Journal of Energy Research 2023 (May 13, 2023): 1–11. http://dx.doi.org/10.1155/2023/2072245.
Pełny tekst źródłaBazhenova, Maria A., Leonid A. Kulikov, Daria A. Makeeva, Anton L. Maximov, and Eduard A. Karakhanov. "Hydrodeoxygenation of Lignin-Based Compounds over Ruthenium Catalysts Based on Sulfonated Porous Aromatic Frameworks." Polymers 15, no. 23 (2023): 4618. http://dx.doi.org/10.3390/polym15234618.
Pełny tekst źródłaGutiérrez-Flores, Selena, Lidia García-Barrera, Daniel Zárate-Saldaña, and Jorge A. Cruz-Morales. "Synthesis of heterogeneous metathesis catalysts for the development of sustainable processes." Renewable Energy, Biomass & Sustainability 3, no. 1 (2022): 75–85. http://dx.doi.org/10.56845/rebs.v3i1.40.
Pełny tekst źródłaThongboon, Surached, Pacharaporn Rittiron, Danusorn Kiatsaengthong, Thanaphat Chukeaw, and Anusorn Seubsai. "Propylene Epoxidation to Propylene Oxide Over RuO2, CuO, TeO2, and TiO2 Supported on Modified Mesoporous Silicas." Journal of Nanoscience and Nanotechnology 20, no. 6 (2020): 3466–77. http://dx.doi.org/10.1166/jnn.2020.17408.
Pełny tekst źródłaPye, Scott J., Justin M. Chalker, and Colin L. Raston. "Vortex Fluidic Ethenolysis, Integrating a Rapid Quench of Ruthenium Olefin Metathesis Catalysts." Australian Journal of Chemistry 73, no. 12 (2020): 1138. http://dx.doi.org/10.1071/ch20005.
Pełny tekst źródłaDrummond, Samuel M., Jennifer Naglic, Thossaporn Onsree, et al. "Promoted Ru/PrOx Catalysts for Mild Ammonia Synthesis." Catalysts 14, no. 9 (2024): 572. http://dx.doi.org/10.3390/catal14090572.
Pełny tekst źródłaSun, Xiandi, Zhiyuan Cheng, Hang Liu, Siyu Chen, and Ya-Rong Zheng. "Porous Ruthenium–Tungsten–Zinc Nanocages for Efficient Electrocatalytic Hydrogen Oxidation Reaction in Alkali." Nanomaterials 14, no. 9 (2024): 808. http://dx.doi.org/10.3390/nano14090808.
Pełny tekst źródłaLin, Bi-Li, Xing Chen, Bai-Tong Niu, Yuan-Ting Lin, Yan-Xin Chen, and Xiu-Mei Lin. "The Research Progress of Ruthenium-Based Catalysts for the Alkaline Hydrogen Evolution Reaction in Water Electrolysis." Catalysts 14, no. 10 (2024): 671. http://dx.doi.org/10.3390/catal14100671.
Pełny tekst źródłaLei, Y. J., X. B. Wang, C. Song, F. H. Li, and X. R. Wang. "A study on ruthenium-based catalysts for pharmaceutical wastewater treatment." Water Science and Technology 64, no. 1 (2011): 117–21. http://dx.doi.org/10.2166/wst.2011.585.
Pełny tekst źródłaSanford, Melanie S, Lawrence M Henling, Michael W Day, and Robert H Grubbs. "Ruthenium-Based Four-Coordinate Olefin Metathesis Catalysts." Angewandte Chemie 112, no. 19 (2000): 3593–95. http://dx.doi.org/10.1002/1521-3757(20001002)112:19<3593::aid-ange3593>3.0.co;2-m.
Pełny tekst źródłaSanford, Melanie S, Lawrence M Henling, Michael W Day, and Robert H Grubbs. "Ruthenium-Based Four-Coordinate Olefin Metathesis Catalysts." Angewandte Chemie 39, no. 19 (2000): 3451–53. http://dx.doi.org/10.1002/1521-3773(20001002)39:19<3451::aid-anie3451>3.0.co;2-u.
Pełny tekst źródłaVillani, Kenneth, Christine E. A. Kirschhock, Duoduo Liang, Gustaaf Van Tendeloo, and Johan A. Martens. "Catalytic Carbon Oxidation Over Ruthenium-Based Catalysts." Angewandte Chemie 118, no. 19 (2006): 3178–81. http://dx.doi.org/10.1002/ange.200503799.
Pełny tekst źródłaVillani, Kenneth, Christine E. A. Kirschhock, Duoduo Liang, Gustaaf Van Tendeloo, and Johan A. Martens. "Catalytic Carbon Oxidation Over Ruthenium-Based Catalysts." Angewandte Chemie International Edition 45, no. 19 (2006): 3106–9. http://dx.doi.org/10.1002/anie.200503799.
Pełny tekst źródłaSimonneaux, Gérard, and Pietro Tagliatesta. "Metalloporphyrin catalysts for organic synthesis." Journal of Porphyrins and Phthalocyanines 08, no. 09 (2004): 1166–71. http://dx.doi.org/10.1142/s1088424604000507.
Pełny tekst źródłaMelián-Rodríguez, Saravanamurugan, Meier, Kegnæs, and Riisager. "Ru-Catalyzed Oxidative Cleavage of Guaiacyl Glycerol--Guaiacyl Ether-a Representative -O-4 Lignin Model Compound." Catalysts 9, no. 10 (2019): 832. http://dx.doi.org/10.3390/catal9100832.
Pełny tekst źródłaStepacheva, A., A. Simanova, and M. Monzharenko. "Ruthenium catalyst for fatty alcohols production." Bulletin of Science and Practice 4, no. 12 (2018): 106–12. https://doi.org/10.5281/zenodo.2255007.
Pełny tekst źródłaMichrowska, Anna, and Karol Grela. "Quest for the ideal olefin metathesis catalyst." Pure and Applied Chemistry 80, no. 1 (2008): 31–43. http://dx.doi.org/10.1351/pac200880010031.
Pełny tekst źródłaPieczykolan, Michał, Justyna Czaban-Jóźwiak, Maura Malinska, et al. "The Influence of Various N-Heterocyclic Carbene Ligands on Activity of Nitro-Activated Olefin Metathesis Catalysts." Molecules 25, no. 10 (2020): 2282. http://dx.doi.org/10.3390/molecules25102282.
Pełny tekst źródłaYim, Kyungmin, Yoomo Koo, Sung Jong Yoo, and Jinsoo Kim. "Facile Spray Pyrolysis Synthesis of Ruthenium Single-Atomic Catalyst with High Activity and Stability for Hydrogen Evolution Reactions over a Wide pH Range." ECS Meeting Abstracts MA2022-01, no. 34 (2022): 1394. http://dx.doi.org/10.1149/ma2022-01341394mtgabs.
Pełny tekst źródłaTelleria, A., P. W. N. M. van Leeuwen, and Z. Freixa. "Azobenzene-based ruthenium(ii) catalysts for light-controlled hydrogen generation." Dalton Transactions 46, no. 11 (2017): 3569–78. http://dx.doi.org/10.1039/c7dt00542c.
Pełny tekst źródłaEcheverri, David Alexander, Luis Alberto Rios, and Juan Miguel Marín. "Synthesising unsaturated fatty alcohols from fatty methyl esters using catalysts based on ruthenium and tin supported on alumina." Ingeniería e Investigación 31, no. 1 (2011): 74–82. http://dx.doi.org/10.15446/ing.investig.v31n1.20528.
Pełny tekst źródłaZhang, Yajing, Qian Wang, Zongsheng Yan, Donglai Ma, and Yuguang Zheng. "Visible-light-mediated copper photocatalysis for organic syntheses." Beilstein Journal of Organic Chemistry 17 (October 12, 2021): 2520–42. http://dx.doi.org/10.3762/bjoc.17.169.
Pełny tekst źródłaOgba, O. M., N. C. Warner, D. J. O’Leary, and R. H. Grubbs. "Recent advances in ruthenium-based olefin metathesis." Chemical Society Reviews 47, no. 12 (2018): 4510–44. http://dx.doi.org/10.1039/c8cs00027a.
Pełny tekst źródłaBorisov, Vadim A., Zaliya A. Fedorova, Victor L. Temerev, et al. "Ceria–Zirconia-Supported Ruthenium Catalysts for Hydrogen Production by Ammonia Decomposition." Energies 16, no. 4 (2023): 1743. http://dx.doi.org/10.3390/en16041743.
Pełny tekst źródłaMartins, Joana A., A. Catarina Faria, Miguel A. Soria, Carlos V. Miguel, Alírio E. Rodrigues, and Luís M. Madeira. "CO2 Methanation over Hydrotalcite-Derived Nickel/Ruthenium and Supported Ruthenium Catalysts." Catalysts 9, no. 12 (2019): 1008. http://dx.doi.org/10.3390/catal9121008.
Pełny tekst źródłaShultz, Lorianne R., Corbin Feit, Jordan Stanberry, et al. "Ultralow Loading Ruthenium on Alumina Monoliths for Facile, Highly Recyclable Reduction of p-Nitrophenol." Catalysts 11, no. 2 (2021): 165. http://dx.doi.org/10.3390/catal11020165.
Pełny tekst źródłaZhang, Rui. "Research Progress on Ruthenium-based Electrocatalysts for Oxygen Evolution Reaction in Water Electrolysis." Frontiers in Sustainable Development 5, no. 2 (2025): 46–49. https://doi.org/10.54691/nghjpc58.
Pełny tekst źródłaOrlando, Antonio, Fiorella Lucarini, Elisabetta Benazzi, Federico Droghetti, Albert Ruggi, and Mirco Natali. "Rethinking Electronic Effects in Photochemical Hydrogen Evolution Using CuInS2@ZnS Quantum Dots Sensitizers." Molecules 27, no. 23 (2022): 8277. http://dx.doi.org/10.3390/molecules27238277.
Pełny tekst źródłaShi, Wenbo, Xiaolong Liu, Junlin Zeng, Jian Wang, Yaodong Wei, and Tingyu Zhu. "Gas-solid catalytic reactions over ruthenium-based catalysts." Chinese Journal of Catalysis 37, no. 8 (2016): 1181–92. http://dx.doi.org/10.1016/s1872-2067(15)61124-x.
Pełny tekst źródłaSmit, Wietse, Vitali Koudriavtsev, Giovanni Occhipinti, Karl W. Törnroos, and Vidar R. Jensen. "Phosphine-Based Z-Selective Ruthenium Olefin Metathesis Catalysts." Organometallics 35, no. 11 (2016): 1825–37. http://dx.doi.org/10.1021/acs.organomet.6b00214.
Pełny tekst źródłaLozano-Vila, Ana M., Stijn Monsaert, Agata Bajek, and Francis Verpoort. "Ruthenium-Based Olefin Metathesis Catalysts Derived from Alkynes." Chemical Reviews 110, no. 8 (2010): 4865–909. http://dx.doi.org/10.1021/cr900346r.
Pełny tekst źródłaVougioukalakis, Georgios C., and Robert H. Grubbs. "Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts†." Chemical Reviews 110, no. 3 (2010): 1746–87. http://dx.doi.org/10.1021/cr9002424.
Pełny tekst źródłaTijani, Amina, Bernard Coq, and François Figueras. "Hydrogenation ofpara-chloronitrobenzene over supported ruthenium-based catalysts." Applied Catalysis 76, no. 2 (1991): 255–66. http://dx.doi.org/10.1016/0166-9834(91)80051-w.
Pełny tekst źródłaKHAN, F., and N. SAHU. "Highly efficient and recyclable ruthenium-based supported catalysts." Journal of Catalysis 231, no. 2 (2005): 438–42. http://dx.doi.org/10.1016/j.jcat.2005.02.001.
Pełny tekst źródłaHarvey, Timothy G., Trevor W. Matheson, Kerry C. Pratt, and Mark S. Stanborought. "Hydroprocessing of shale oil using ruthenium-based catalysts." Fuel 66, no. 6 (1987): 766–70. http://dx.doi.org/10.1016/0016-2361(87)90121-9.
Pełny tekst źródła