Gotowa bibliografia na temat „Sachdev-Ye-Kitaev”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Sachdev-Ye-Kitaev”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Sachdev-Ye-Kitaev"

1

Liu, Yizhuang, Maciej A. Nowak, and Ismail Zahed. "Disorder in the Sachdev–Ye–Kitaev model." Physics Letters B 773 (October 2017): 647–53. http://dx.doi.org/10.1016/j.physletb.2017.08.054.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Bagrets, Dmitry, Alexander Altland, and Alex Kamenev. "Sachdev–Ye–Kitaev model as Liouville quantum mechanics." Nuclear Physics B 911 (October 2016): 191–205. http://dx.doi.org/10.1016/j.nuclphysb.2016.08.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Cao, Ye, Yi-Neng Zhou, Ting-Ting Shi, and Wei Zhang. "Towards quantum simulation of Sachdev-Ye-Kitaev model." Science Bulletin 65, no. 14 (2020): 1170–76. http://dx.doi.org/10.1016/j.scib.2020.03.037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Polchinski, Joseph, and Vladimir Rosenhaus. "The spectrum in the Sachdev-Ye-Kitaev model." Journal of High Energy Physics 2016, no. 4 (2016): 1–25. http://dx.doi.org/10.1007/jhep04(2016)001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Khramtsov, M. A. "Spontaneous Symmetry Breaking in the Sachdev–Ye–Kitaev Model." Physics of Particles and Nuclei 51, no. 4 (2020): 557–61. http://dx.doi.org/10.1134/s1063779620040401.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Bandyopadhyay, Soumik, Philipp Uhrich, Alessio Paviglianiti, and Philipp Hauke. "Universal equilibration dynamics of the Sachdev-Ye-Kitaev model." Quantum 7 (May 24, 2023): 1022. http://dx.doi.org/10.22331/q-2023-05-24-1022.

Pełny tekst źródła
Streszczenie:
Equilibrium quantum many-body systems in the vicinity of phase transitions generically manifest universality. In contrast, limited knowledge has been gained on possible universal characteristics in the non-equilibrium evolution of systems in quantum critical phases. In this context, universality is generically attributed to the insensitivity of observables to the microscopic system parameters and initial conditions. Here, we present such a universal feature in the equilibration dynamics of the Sachdev-Ye-Kitaev (SYK) Hamiltonian – a paradigmatic system of disordered, all-to-all interacting fer
Style APA, Harvard, Vancouver, ISO itp.
7

Rashkov, Radoslav. "Integrable structures in low-dimensional holography and cosmologies." International Journal of Modern Physics A 33, no. 34 (2018): 1845008. http://dx.doi.org/10.1142/s0217751x18450082.

Pełny tekst źródła
Streszczenie:
We focus on the integrable properties in low-dimensional holography. The motivation is that most of the integrable structures underlying holographic duality survive weak-strong coupling transition. We found relation between certain integrable structures in low-dimensional holography and key characteristics of the theories. We propose generalizations to higher spin (HS) theories including Sachdev–Ye–Kitaev (SYK) model. We comment on some of the intriguing relations found in this study.
Style APA, Harvard, Vancouver, ISO itp.
8

Nishinaka, Takahiro, and Seiji Terashima. "A note on Sachdev–Ye–Kitaev like model without random coupling." Nuclear Physics B 926 (January 2018): 321–34. http://dx.doi.org/10.1016/j.nuclphysb.2017.11.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Fusy, É., L. Lionni, and A. Tanasa. "Combinatorial study of graphs arising from the Sachdev–Ye–Kitaev model." European Journal of Combinatorics 86 (May 2020): 103066. http://dx.doi.org/10.1016/j.ejc.2019.103066.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Zhang, Pengfei, and Hui Zhai. "Topological Sachdev-Ye-Kitaev model." Physical Review B 97, no. 20 (2018). http://dx.doi.org/10.1103/physrevb.97.201112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Sachdev-Ye-Kitaev"

1

Pascalie, Romain. "Tenseurs aléatoires et modèle de Sachdev-Ye-Kitaev." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0099.

Pełny tekst źródła
Streszczenie:
Dans cette thèse nous traitons de différents aspects des tenseurs aléatoires. Dans la première partie de la thèse, nous étudions la formulation des tenseurs aléatoires en termes de théorie quantique des champs nommée théorie de champs tensoriels (TFT). En particulier nous déterminons les équations de Schwinger-Dyson pour une TFT de tenseurs de rang arbitraire, munie d'un terme d'intéraction quartic melonique U(N)-invariant.Les fonctions de corrélations sont classifiées par des graphes de bords et nous utilisons l'identité de Ward-Takashi pour déterminer le système complet d'équations de Schwin
Style APA, Harvard, Vancouver, ISO itp.
2

Bala, Subramanian P. N. "Applications of Holography." Thesis, 2018. https://etd.iisc.ac.in/handle/2005/5294.

Pełny tekst źródła
Streszczenie:
This thesis consists of four parts. In the first part of the thesis, we investigate the phase structure of Einstein-Maxwell-Scalar system with a negative cosmological constant. For the conformally coupled scalar, an intricate phase diagram is charted out between the four relevant solutions: global AdS, boson star, Reissner-Nordstrom black hole and the hairy black hole. The nature of the phase diagram undergoes qualitative changes as the charge of the scalar is changed, which we discuss. We also discuss the new features that arise in the extremal limit. In the second part, we do a system
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Sachdev-Ye-Kitaev"

1

Tanasa, Adrian. Combinatorial Physics. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895493.001.0001.

Pełny tekst źródła
Streszczenie:
After briefly presenting (for the physicist) some notions frequently used in combinatorics (such as graphs or combinatorial maps) and after briefly presenting (for the combinatorialist) the main concepts of quantum field theory (QFT), the book shows how algebraic combinatorics can be used to deal with perturbative renormalisation (both in commutative and non-commutative quantum field theory), how analytic combinatorics can be used for QFT issues (again, for both commutative and non-commutative QFT), how Grassmann integrals (frequently used in QFT) can be used to proCve new combinatorial identi
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Sachdev-Ye-Kitaev"

1

Das, Sumit R., Animik Ghosh, Antal Jevicki, and Kenta Suzuki. "Duality in the Sachdev-Ye-Kitaev Model." In Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 2. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2179-5_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

"Sachdev--Ye--Kitaev Models." In Quantum Phases of Matter. Cambridge University Press, 2023. http://dx.doi.org/10.1017/9781009212717.033.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Tanasa, Adrian. "The Sachdev–Ye–Kitaev (SYK) holographic model." In Combinatorial Physics. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895493.003.0015.

Pełny tekst źródła
Streszczenie:
In this chapter, we first review the Sachdev–Ye–Kitaev (SYK) model, which is a quantum mechanical model of N fermions. The model is a quenched model, which means that the coupling constant is a random tensor with Gaussian distribution. The SYK model is dominated in the large N limit by melonic graphs, in the same way the tensor models presented in the previous three chapters are dominated by melonic graphs. We then present a purely graph theoretical proof of the melonic dominance of the SYK model. It is this property which led E. Witten to relate the SYK model to the coloured tensor model. In the rest of the chapter we deal with the so-called coloured SYK model, which is a particular case of the generalisation of the SYK model introduced by D. Gross and V. Rosenhaus. We first analyse in detail the leading order and next-to-leading order vacuum, two- and four-point Feynman graphs of this model. We then exhibit a thorough asymptotic combinatorial analysis of the Feynman graphs at an arbitrary order in the large N expansion. We end the chapter by an analysis of the effect of non-Gaussian distribution for the coupling of the model.
Style APA, Harvard, Vancouver, ISO itp.
4

Tanasa, Adrian. "SYK-like tensor models." In Combinatorial Physics. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895493.003.0016.

Pełny tekst źródła
Streszczenie:
In this chapter we analyse in detail the diagrammatics of various Sachdev–Ye–Kitaev-like tensor models: the Gurau–Witten model (in the first section), and the multi-orientable and O(N)<sup>3</sup>-invariant tensor models, in the rest of the chapter. Various explicit graph theoretical techniques are used. The Feynman graphs obtained through perturbative expansion are stranded graphs where each strand represents the propagation of an index nij, alternating stranded edges of colours i and j. However, it is important to emphasize here that since no twists among the strands are allowed, one can easily represent the Feynman tensor graphs as standard Feynman graphs with additional colours on the edges.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!