Gotowa bibliografia na temat „Salts and batteries”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Salts and batteries”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Salts and batteries"
Bahaj, Imane, Anil Kumar M R, and Karim Zaghib. "Metals Salts for Rechargeable Batteries: Past Present and Future." ECS Meeting Abstracts MA2025-01, no. 3 (2025): 391. https://doi.org/10.1149/ma2025-013391mtgabs.
Pełny tekst źródłaZhao, Qing, Jianbin Wang, Yong Lu, Yixin Li, Guangxin Liang, and Jun Chen. "Oxocarbon Salts for Fast Rechargeable Batteries." Angewandte Chemie International Edition 55, no. 40 (2016): 12528–32. http://dx.doi.org/10.1002/anie.201607194.
Pełny tekst źródłaZhao, Qing, Jianbin Wang, Yong Lu, Yixin Li, Guangxin Liang, and Jun Chen. "Oxocarbon Salts for Fast Rechargeable Batteries." Angewandte Chemie 128, no. 40 (2016): 12716–20. http://dx.doi.org/10.1002/ange.201607194.
Pełny tekst źródłaYounesi, Reza, Gabriel M. Veith, Patrik Johansson, Kristina Edström, and Tejs Vegge. "Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S." Energy & Environmental Science 8, no. 7 (2015): 1905–22. http://dx.doi.org/10.1039/c5ee01215e.
Pełny tekst źródłaNagasubramanian, G., D. H. Shen, S. Surampudi, Qunjie Wang, and G. K. Surya Prakash. "Lithium superacid salts for secondary lithium batteries." Electrochimica Acta 40, no. 13-14 (1995): 2277–80. http://dx.doi.org/10.1016/0013-4686(95)00177-g.
Pełny tekst źródłaKaraseva, E. V., L. A. Khramtsova, N. V. Shakirova, E. V. Kuzmina, and V. S. Kolosnitsyn. "Sulfur solubility in sulfolane electrolytes for lithium-sulfur batteries." Журнал общей химии 93, no. 5 (2023): 813–20. http://dx.doi.org/10.31857/s0044460x23050165.
Pełny tekst źródłaLiu, Qian, Jinghua Yin, Minghua Chen, Jialong Shen, Xinhao Zhao, and Yulong Liu. "Lithium Salt Screening for PEO-Based Solid Electrolytes of All Solid-State Li Ion Batteries Using Density Functional Theory." Crystals 15, no. 4 (2025): 333. https://doi.org/10.3390/cryst15040333.
Pełny tekst źródłaYunis, Ruhamah, Jennifer M. Pringle, Xiaoen Wang, et al. "Solid (cyanomethyl)trimethylammonium salts for electrochemically stable electrolytes for lithium metal batteries." Journal of Materials Chemistry A 8, no. 29 (2020): 14721–35. http://dx.doi.org/10.1039/d0ta03502e.
Pełny tekst źródłaDi Cillo, Dario, Luca Bargnesi, Giampaolo Lacarbonara, and Catia Arbizzani. "Ammonium and Tetraalkylammonium Salts as Additives for Li Metal Electrodes." Batteries 9, no. 2 (2023): 142. http://dx.doi.org/10.3390/batteries9020142.
Pełny tekst źródłaAravindan, Vanchiappan, Joe Gnanaraj, Srinivasan Madhavi, and Hua-Kun Liu. "Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries." Chemistry - A European Journal 17, no. 51 (2011): 14326–46. http://dx.doi.org/10.1002/chem.201101486.
Pełny tekst źródłaRozprawy doktorskie na temat "Salts and batteries"
Keyzer, Evan. "Development of electrolyte salts for multivalent ion batteries." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288431.
Pełny tekst źródłaRohde, Michael [Verfasser], and Ingo [Akademischer Betreuer] Krossing. "New conducting salts for rechargeable lithium-ion batteries = Neue Leitsalze für wiederaufladbare Lithium-Ionen Batterien." Freiburg : Universität, 2014. http://d-nb.info/1123481490/34.
Pełny tekst źródłaRuiz, Onofre Patricia Nathaly. "Evaluation of pyrochemistry in molten salts for recycling Li-ion batteries." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS346.
Pełny tekst źródłaChinnam, Parameswara Rao. "MULTI-IONIC LITHIUM SALTS FOR USE IN SOLID POLYMER ELECTROLYTES FOR LITHIUM BATTERIES." Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/311780.
Pełny tekst źródłaGray, Gary E. "Stability of sodium electrodeposited from a series of room temperature chloroaluminate molten salts." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/11107.
Pełny tekst źródła周如琪 and Ruqi Zhou. "Fundamental and applied studies of the low melting 1-methyl-3-ethylimidazolium chloride system for lithium battery application." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31243940.
Pełny tekst źródłaZhou, Ruqi. "Fundamental and applied studies of the low melting 1-methyl-3-ethylimidazolium chloride system for lithium battery application /." Hong Kong : University of Hong Kong, 2002. http://sunzi.lib.hku.hk/hkuto/record.jsp?B24728883.
Pełny tekst źródłaLang, Christopher M. "Development of quaternary ammonium based electrolytes for rechargeable batteries and fuel cells." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-10262006-140639/.
Pełny tekst źródłaZhu, Derong, and 朱德榮. "Room temperature molten salts as media for the development of negativeelectrodes in lithium ion batteries and the electrochemical formationof high temperature superconductor precursor." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31243952.
Pełny tekst źródłaZhu, Derong. "Room temperature molten salts as media for the development of negative electrodes in lithium ion batteries and the electrochemical formation of high temperature superconductor precursor /." Hong Kong : University of Hong Kong, 2002. http://sunzi.lib.hku.hk/hkuto/record.jsp?B25059300.
Pełny tekst źródłaKsiążki na temat "Salts and batteries"
Yuan, Du, Gen Chen, Chuankun Jia, and Haitao Zhang, eds. Deep Eutectic Solvents/Complex Salts-Based Electrolyte for Next Generation Rechargeable Batteries. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88966-376-7.
Pełny tekst źródłaAccumulators, Primary Cells and Batteries 1996 (Product Sales and Trade: PRA64). The Stationery Office Books (Agencies), 1997.
Znajdź pełny tekst źródłaXie, Jian. Chloroaluminate molten salt electrolytes and Vb2sOb5s xerogel cathodes for high energy density batteries. 1999.
Znajdź pełny tekst źródłaCzęści książek na temat "Salts and batteries"
Hartnig, Christoph, and Michael Schmidt. "Electrolytes and conducting salts." In Lithium-Ion Batteries: Basics and Applications. Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53071-9_6.
Pełny tekst źródłaPrisyazhnyi, V. D., V. I. Lisin, and E. S. Lee. "Low — Melting Salts and Glasses as Li- Battery Electrolytes." In New Promising Electrochemical Systems for Rechargeable Batteries. Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1643-2_7.
Pełny tekst źródłaCarlin, R. T., and J. Fuller. "Electrodes and Electrolytes for Molten Salt Batteries: Expanding the Temperature Regimes." In Molten Salts: From Fundamentals to Applications. Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0458-9_13.
Pełny tekst źródłaHagiwara, R., T. Nohira, K. Numata, et al. "Rechargeable Alkaline Metal Batteries of Amide Salt Electrolytes Melting at Low to Middle Temperatures." In Molten Salts Chemistry and Technology. John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118448847.ch7d.
Pełny tekst źródłaGuoxing, Ren, Xiao Songwen, Xie Meiqiu, et al. "Recovery of Valuable Metals from Spent Lithium-Ion Batteries by Smelting Reduction Process Based on MnO-SiO2-Al2O3Slag System." In Advances in Molten Slags, Fluxes, and Salts. John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119333197.ch22.
Pełny tekst źródłaGuoxing, Ren, Xiao Songwen, Xie Meiqiu, et al. "Recovery of Valuable Metals from Spent Lithium-Ion Batteries by Smelting Reduction Process Based on MnO-SiO2-Al2O3 Slag System." In Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48769-4_22.
Pełny tekst źródłaMarassi, R., S. Zamponi, and M. Berrettoni. "Molten Salt Batteries." In Molten Salt Chemistry. Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3863-2_24.
Pełny tekst źródłaKim, Tae-Bum, Cheol Wan Park, Ho Suk Ryu, and Hyo Jun Ahn. "Ionic Conductivity of Sodium Ion with NaCF3SO3 Salts in Electrolyte for Sodium Batteries." In Materials Science Forum. Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-966-0.638.
Pełny tekst źródłaRao, B. M. L., W. Kobasz, W. H. Hoge, R. P. Hamlen, W. Halliop, and N. P. Fitzpatrick. "Advances in Aluminum—Air Salt Water Batteries." In Electrochemistry in Transition. Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-9576-2_39.
Pełny tekst źródłaWillgert, Markus, Maria H. Kjell, and Mats Johansson. "Effect of Lithium Salt Content on the Performance of Thermoset Lithium Battery Electrolytes." In Polymers for Energy Storage and Delivery: Polyelectrolytes for Batteries and Fuel Cells. American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1096.ch004.
Pełny tekst źródłaStreszczenia konferencji na temat "Salts and batteries"
Kuhn, Bernd, Fischer, and Torsten. "Fatigue Properties of High-Performance Ferritic (HiperFer) Steels." In AM-EPRI 2024. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.am-epri-2024p0517.
Pełny tekst źródłaCaja, Josip, T. Don, J. Dunstan, Vladimir Katovic, and David M. Ryan. "Room Temperature Molten Salts (Ionic Liquids) as Electrolytes in Rechargeable Lithium Batteries." In Aerospace Power Systems Conference. SAE International, 1999. http://dx.doi.org/10.4271/1999-01-1403.
Pełny tekst źródłaYoon, Sungjae, Sangyup Lee, Paul Maldonado Nogales, and Soon Ki Jeong. "Impacts of Lithium Salt on Interfacial Reactions between SiO and Ethlyene Carbonate-Based Solutions in Lithium Secondary Batteries." In International Conference on Advanced Materials, Mechanics and Structural Engineering. Trans Tech Publications Ltd, 2024. http://dx.doi.org/10.4028/p-ldtpq6.
Pełny tekst źródłaKlemettinen, L., J. Biswas, A. Klemettinen, et al. "Towards integration of pyro- and hydrometallurgical unit operations for efficient recovery of battery metals from waste lithium-ion batteries." In 12th International Conference of Molten Slags, Fluxes and Salts (MOLTEN 2024) Proceedings. Australasian Institute of Mining and Metallurgy (AusIMM), 2024. http://dx.doi.org/10.62053/eurl8600.
Pełny tekst źródłaHayes, P., and E. Jak. "The MOLTEN Conference series and research trends in slags, fluxes and salts 1980–2023." In 12th International Conference of Molten Slags, Fluxes and Salts (MOLTEN 2024) Proceedings. Australasian Institute of Mining and Metallurgy (AusIMM), 2024. http://dx.doi.org/10.62053/hzbp9541.
Pełny tekst źródłaZhao, Qiuping, Yu Zhang, Fengjuan Tang, and Shiyou Li. "Effect of mixed salts electrolyte on high temperature performance in LiNi1/3Co1/3Mn1/3O2 batteries." In 2ND INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, RESOURCE AND ENVIRONMENTAL ENGINEERING (MSREE 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5005299.
Pełny tekst źródłaForsberg, Charles. "100-Gigawatt-Hour Crushed-Rock Heat Storage for Variable Electricity and Heat With Base-Load Reactor Operations." In 2021 28th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/icone28-64632.
Pełny tekst źródłaLee, H.-R., H. Shin, S.-C. Shim, and Y. Kang. "Viscosity measurement of FeO-SiO2 based slags under controlled oxygen partial pressures." In 12th International Conference of Molten Slags, Fluxes and Salts (MOLTEN 2024) Proceedings. Australasian Institute of Mining and Metallurgy (AusIMM), 2024. http://dx.doi.org/10.62053/lyvj9833.
Pełny tekst źródłaPapović, Snežana, Jovana Panić, Teona Teodora V. Borović, et al. "Influence of the ionic liquids-based electrolytes on the tomato (Solanum lycopersicum L.) and cucumber (Cucumis sativus L.) growth, development and oxidative stress." In 2nd International Conference on Chemo and Bioinformatics. Institute for Information Technologies, University of Kragujevac, 2023. http://dx.doi.org/10.46793/iccbi23.128p.
Pełny tekst źródłaArro, Christian, Mohammad Ibrahim Ahmad, and Nasr Bensalah. "Investigation on the effect of LiTFSI salt on PVDF-based Solid Polymer Electrolyte Membranes for Lithium-Ion Batteries." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0042.
Pełny tekst źródłaRaporty organizacyjne na temat "Salts and batteries"
De Mello, Joao, Daniel Mejía, and Lucía Suárez. The Pharmacological Channel Revisited: Alcohol Sales Restrictions and Crime in Bogota. Inter-American Development Bank, 2013. http://dx.doi.org/10.18235/0011466.
Pełny tekst źródłaLong, Kevin Nicholas, Christine Cardinal Roberts, Scott Alan Roberts, and Anne Grillet. The mechanics of pressed-pellet separators in molten salt batteries. Office of Scientific and Technical Information (OSTI), 2014. http://dx.doi.org/10.2172/1177059.
Pełny tekst źródłaRupke, Andrew. Estimates of Lithium, Magnesium, and Potassium Resources in Great Salt Lake Brine. Utah Geological Survey, 2025. https://doi.org/10.34191/ofr-769.
Pełny tekst źródłaYusgiantoro, Luky A., Akhmad Hanan, Budi P. Sunariyanto, and Mayora B. Swastika. Mapping Indonesia’s EV Potential in Global EV Supply Chain. Purnomo Yusgiantoro Center, 2021. http://dx.doi.org/10.33116/br.004.
Pełny tekst źródła