Artykuły w czasopismach na temat „Salts and batteries”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Salts and batteries”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Bahaj, Imane, Anil Kumar M R, and Karim Zaghib. "Metals Salts for Rechargeable Batteries: Past Present and Future." ECS Meeting Abstracts MA2025-01, no. 3 (2025): 391. https://doi.org/10.1149/ma2025-013391mtgabs.
Pełny tekst źródłaZhao, Qing, Jianbin Wang, Yong Lu, Yixin Li, Guangxin Liang, and Jun Chen. "Oxocarbon Salts for Fast Rechargeable Batteries." Angewandte Chemie International Edition 55, no. 40 (2016): 12528–32. http://dx.doi.org/10.1002/anie.201607194.
Pełny tekst źródłaZhao, Qing, Jianbin Wang, Yong Lu, Yixin Li, Guangxin Liang, and Jun Chen. "Oxocarbon Salts for Fast Rechargeable Batteries." Angewandte Chemie 128, no. 40 (2016): 12716–20. http://dx.doi.org/10.1002/ange.201607194.
Pełny tekst źródłaYounesi, Reza, Gabriel M. Veith, Patrik Johansson, Kristina Edström, and Tejs Vegge. "Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S." Energy & Environmental Science 8, no. 7 (2015): 1905–22. http://dx.doi.org/10.1039/c5ee01215e.
Pełny tekst źródłaNagasubramanian, G., D. H. Shen, S. Surampudi, Qunjie Wang, and G. K. Surya Prakash. "Lithium superacid salts for secondary lithium batteries." Electrochimica Acta 40, no. 13-14 (1995): 2277–80. http://dx.doi.org/10.1016/0013-4686(95)00177-g.
Pełny tekst źródłaKaraseva, E. V., L. A. Khramtsova, N. V. Shakirova, E. V. Kuzmina, and V. S. Kolosnitsyn. "Sulfur solubility in sulfolane electrolytes for lithium-sulfur batteries." Журнал общей химии 93, no. 5 (2023): 813–20. http://dx.doi.org/10.31857/s0044460x23050165.
Pełny tekst źródłaLiu, Qian, Jinghua Yin, Minghua Chen, Jialong Shen, Xinhao Zhao, and Yulong Liu. "Lithium Salt Screening for PEO-Based Solid Electrolytes of All Solid-State Li Ion Batteries Using Density Functional Theory." Crystals 15, no. 4 (2025): 333. https://doi.org/10.3390/cryst15040333.
Pełny tekst źródłaYunis, Ruhamah, Jennifer M. Pringle, Xiaoen Wang, et al. "Solid (cyanomethyl)trimethylammonium salts for electrochemically stable electrolytes for lithium metal batteries." Journal of Materials Chemistry A 8, no. 29 (2020): 14721–35. http://dx.doi.org/10.1039/d0ta03502e.
Pełny tekst źródłaDi Cillo, Dario, Luca Bargnesi, Giampaolo Lacarbonara, and Catia Arbizzani. "Ammonium and Tetraalkylammonium Salts as Additives for Li Metal Electrodes." Batteries 9, no. 2 (2023): 142. http://dx.doi.org/10.3390/batteries9020142.
Pełny tekst źródłaAravindan, Vanchiappan, Joe Gnanaraj, Srinivasan Madhavi, and Hua-Kun Liu. "Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries." Chemistry - A European Journal 17, no. 51 (2011): 14326–46. http://dx.doi.org/10.1002/chem.201101486.
Pełny tekst źródłaFray, Derek. "Molten salts and energy related materials." Faraday Discussions 190 (2016): 11–34. http://dx.doi.org/10.1039/c6fd00090h.
Pełny tekst źródłaXia, Lan, Linpo Yu, Di Hu, and George Z. Chen. "Electrolytes for electrochemical energy storage." Materials Chemistry Frontiers 1, no. 4 (2017): 584–618. http://dx.doi.org/10.1039/c6qm00169f.
Pełny tekst źródłaNaaresh Reddy, G., Rakesh Parida, and Santanab Giri. "Li@organic superhalogens: possible electrolytes in Li-ion batteries." Chemical Communications 53, no. 71 (2017): 9942–45. http://dx.doi.org/10.1039/c7cc05317g.
Pełny tekst źródłaMuzadi, Hasim, Nayla Zahra Kamalia, Titik Lestariningsih, and Yayuk Astuti. "Effect of LiTFSI Electrolyte Salt Composition on Characteristics of PVDF-PEO-LiTFSI-Based Solid Polymer Electrolyte (SPE) for Lithium-Ion Battery." Molekul 18, no. 1 (2023): 98. http://dx.doi.org/10.20884/1.jm.2023.18.1.6446.
Pełny tekst źródłaAhn, Tae-Young, Hae-Won Cheong, Seung-Ho Kang, Jae-In Lee, Minu Kim, and Yusong Choi. "Development of a low-melting-point eutectic salt and evaluation of its discharge performance for light weight thermal batteries." RSC Advances 12, no. 34 (2022): 21978–81. http://dx.doi.org/10.1039/d2ra03436k.
Pełny tekst źródłaLee, Wonmi, Agnesia Permatasari, and Yongchai Kwon. "Neutral pH aqueous redox flow batteries using an anthraquinone-ferrocyanide redox couple." Journal of Materials Chemistry C 8, no. 17 (2020): 5727–31. http://dx.doi.org/10.1039/d0tc00640h.
Pełny tekst źródłaBan, Chunmei. "(Invited) Advancing Sodium-Ion Battery Electrolyte Technologies through Multidisciplinary Approaches." ECS Meeting Abstracts MA2024-02, no. 2 (2024): 206. https://doi.org/10.1149/ma2024-022206mtgabs.
Pełny tekst źródłaFray, D. "Renewable energy and the role of molten salts and carbon." Journal of Mining and Metallurgy, Section B: Metallurgy 49, no. 2 (2013): 125–30. http://dx.doi.org/10.2298/jmmb121219016f.
Pełny tekst źródłaSun, Xiao-Guang, Shun Wan, Hong Yu Guan, et al. "Correction: New promising lithium malonatoborate salts for high voltage lithium ion batteries." Journal of Materials Chemistry A 5, no. 14 (2017): 6756. http://dx.doi.org/10.1039/c7ta90065a.
Pełny tekst źródłaKhalid, Shahid, Nicolò Pianta, Piercarlo Mustarelli, and Riccardo Ruffo. "Use of Water-in-Salt Concentrated Liquid Electrolytes in Electrochemical Energy Storage: State of the Art and Perspectives." Batteries 9, no. 1 (2023): 47. http://dx.doi.org/10.3390/batteries9010047.
Pełny tekst źródłaMeyer, Mathieu, Lydie Viau, Ahmad Mehdi, Sophie Monge, Patrick Judeinstein, and André Vioux. "What use for polysilsesquioxane lithium salts in lithium batteries?" New Journal of Chemistry 40, no. 9 (2016): 7657–62. http://dx.doi.org/10.1039/c6nj00979d.
Pełny tekst źródłaLiao, Chen, Bingkun Guo, De-en Jiang, et al. "Highly soluble alkoxide magnesium salts for rechargeable magnesium batteries." J. Mater. Chem. A 2, no. 3 (2014): 581–84. http://dx.doi.org/10.1039/c3ta13691d.
Pełny tekst źródłaLanda-Medrano, Imanol, Mara Olivares-Marín, Benjamin Bergner, et al. "Potassium Salts as Electrolyte Additives in Lithium–Oxygen Batteries." Journal of Physical Chemistry C 121, no. 7 (2017): 3822–29. http://dx.doi.org/10.1021/acs.jpcc.7b00355.
Pełny tekst źródłaAbu-Lebdeh, Yaser, Emily Austin, and Isobel J. Davidson. "Spiro-ammonium Imide Salts as Electrolytes for Lithium Batteries." Chemistry Letters 38, no. 8 (2009): 782–83. http://dx.doi.org/10.1246/cl.2009.782.
Pełny tekst źródłaByrne, Aimee, Shane Barry, Niall Holmes, and Brian Norton. "Optimising the Performance of Cement-Based Batteries." Advances in Materials Science and Engineering 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/4724302.
Pełny tekst źródłaCho, Jang-Hyeon, Eunji Yoo, Jae-Seong Yeo, Hyunki Yoon, and Yusong Choi. "Improved Electrochemical Performances of Li/CFx-MnO2 Primary Batteries Via the Optimization of Electrolytes." ECS Meeting Abstracts MA2022-02, no. 2 (2022): 153. http://dx.doi.org/10.1149/ma2022-022153mtgabs.
Pełny tekst źródłaChattopadhyay, Jayeeta, Tara Sankar Pathak, and Diogo M. F. Santos. "Applications of Polymer Electrolytes in Lithium-Ion Batteries: A Review." Polymers 15, no. 19 (2023): 3907. http://dx.doi.org/10.3390/polym15193907.
Pełny tekst źródłaAmanchukwu, Chibueze. "Solvent-Free Molten Salts for Next Generation Lithium Metal Batteries." ECS Meeting Abstracts MA2024-02, no. 7 (2024): 904. https://doi.org/10.1149/ma2024-027904mtgabs.
Pełny tekst źródłaYun, Hyeri, and Soon Ki Jeong. "Influence of Lithium Salts on Solid Electrolyte Interphase Formation and Interfacial Resistance in Silicon Monoxide-Based Lithium Secondary Batteries." Defect and Diffusion Forum 442 (May 16, 2025): 29–34. https://doi.org/10.4028/p-phu5rp.
Pełny tekst źródłaDranka, Maciej, and Janusz Zachara. "Coordination modes of novel 4,5-dicyanoimidazolato ligand in alkali metal salts." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C650. http://dx.doi.org/10.1107/s2053273314093498.
Pełny tekst źródłaRohan, James F., Declan P. Casey, Giampaolo Lacarbonara, et al. "(Digital Presentation) Electrolyte Optimisation for Copper Deposition and Dissolution in Redox Flow Batteries." ECS Meeting Abstracts MA2022-01, no. 3 (2022): 511. http://dx.doi.org/10.1149/ma2022-013511mtgabs.
Pełny tekst źródłaMo, Funian, Binbin Guo, Wei Ling, et al. "Recent Progress and Challenges of Flexible Zn-Based Batteries with Polymer Electrolyte." Batteries 8, no. 6 (2022): 59. http://dx.doi.org/10.3390/batteries8060059.
Pełny tekst źródłaLin, Yu-Hsing, Chun-Yan Shih, Ramesh Subramani, et al. "Ternary-salt gel polymer electrolyte for anode-free lithium metal batteries with an untreated Cu substrate." Journal of Materials Chemistry A 10, no. 9 (2022): 4895–905. http://dx.doi.org/10.1039/d1ta09819e.
Pełny tekst źródłaPeters, Brandon L., Zhou Yu, Paul C. Redfern, Larry A. Curtiss, and Lei Cheng. "Effects of Salt Aggregation in Perfluoroether Electrolytes." Journal of The Electrochemical Society 169, no. 2 (2022): 020506. http://dx.doi.org/10.1149/1945-7111/ac4c7a.
Pełny tekst źródłaKamali, Ali Reza, Hyun-Kyung Kim, Kwang-Bum Kim, R. Vasant Kumar, and Derek J. Fray. "Large scale green production of ultra-high capacity anode consisting of graphene encapsulated silicon nanoparticles." Journal of Materials Chemistry A 5, no. 36 (2017): 19126–35. http://dx.doi.org/10.1039/c7ta04335j.
Pełny tekst źródłaBushkova, O. V., T. V. Yaroslavtseva, and Yu A. Dobrovolsky. "New lithium salts in electrolytes for lithium-ion batteries (Review)." Russian Journal of Electrochemistry 53, no. 7 (2017): 677–99. http://dx.doi.org/10.1134/s1023193517070035.
Pełny tekst źródłaYoshimoto, Nobuko, Shin Yakushiji, Masashi Ishikawa, and Masayuki Morita. "Rechargeable magnesium batteries with polymeric gel electrolytes containing magnesium salts." Electrochimica Acta 48, no. 14-16 (2003): 2317–22. http://dx.doi.org/10.1016/s0013-4686(03)00221-4.
Pełny tekst źródłaShanmukaraj, Devaraj, Sylvie Grugeon, Stéphane Laruelle, Gregory Douglade, Jean-Marie Tarascon, and Michel Armand. "Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries." Electrochemistry Communications 12, no. 10 (2010): 1344–47. http://dx.doi.org/10.1016/j.elecom.2010.07.016.
Pełny tekst źródłaBitner-Michalska, A., A. Krztoń-Maziopa, G. Żukowska, T. Trzeciak, W. Wieczorek, and M. Marcinek. "Liquid electrolytes containing new tailored salts for sodium-ion batteries." Electrochimica Acta 222 (December 2016): 108–15. http://dx.doi.org/10.1016/j.electacta.2016.10.146.
Pełny tekst źródłaAravindan, Vanchiappan, Joe Gnanaraj, Srinivasan Madhavi, and Hua-Kun Liu. "ChemInform Abstract: Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries." ChemInform 43, no. 12 (2012): no. http://dx.doi.org/10.1002/chin.201212209.
Pełny tekst źródłaIto, Asae, and Koh-hei Nitta. "Additive Effects of Lithium Salts with Various Anionic Species in Poly (Methyl Methacrylate)." Molecules 26, no. 13 (2021): 4096. http://dx.doi.org/10.3390/molecules26134096.
Pełny tekst źródłaQin, Bingsheng, Zhihong Liu, Jie Zheng, et al. "Single-ion dominantly conducting polyborates towards high performance electrolytes in lithium batteries." Journal of Materials Chemistry A 3, no. 15 (2015): 7773–79. http://dx.doi.org/10.1039/c5ta00216h.
Pełny tekst źródłaLi, Xiaoqiao, Linming Zhou, Han Wang, et al. "Dopants modulate crystal growth in molten salts enabled by surface energy tuning." Journal of Materials Chemistry A 9, no. 35 (2021): 19675–80. http://dx.doi.org/10.1039/d1ta02351a.
Pełny tekst źródłaHamad, Khaleel I., and Yangchuan Xing. "Stabilizing Li-rich NMC Materials by Using Precursor Salts with Acetate and Nitrate Anions for Li-ion Batteries." Batteries 5, no. 4 (2019): 69. http://dx.doi.org/10.3390/batteries5040069.
Pełny tekst źródłaZhu, Lingyun, and Ming Chen. "Development of a Two-Stage Pyrolysis Process for the End-Of-Life Nickel Cobalt Manganese Lithium Battery Recycling from Electric Vehicles." Sustainability 12, no. 21 (2020): 9164. http://dx.doi.org/10.3390/su12219164.
Pełny tekst źródłaSmolinski, Maciej, Aleksandra Ossowska, Maciej Marczewski, Adam Łaszcz, and Marek Marcinek. "Novel Electrolyte Applications in Lithium-Sulfur Batteries Containing MOF-Modified Cathodes." ECS Meeting Abstracts MA2024-02, no. 1 (2024): 129. https://doi.org/10.1149/ma2024-021129mtgabs.
Pełny tekst źródłaLin, Ziyang, and Zhuofan Wang. "Application of Solid Polymer Electrolytes for Solid-State Sodium Batteries." MATEC Web of Conferences 386 (2023): 03019. http://dx.doi.org/10.1051/matecconf/202338603019.
Pełny tekst źródłaAbed, Thakir H., Meethaq M. Abed, Burak Y. Kadem, and Ahmad T. Jaiad. "Rechargeable Flexible Paper Battery using PAV, PSSPEDOT Polymer." IOP Conference Series: Earth and Environmental Science 877, no. 1 (2021): 012037. http://dx.doi.org/10.1088/1755-1315/877/1/012037.
Pełny tekst źródłaGonzález-Barredo, Sergio, and Miguel Ángel Reyes-Belmonte. "Renewable Energy Curtailment Storage in Molten Salt and Solid Particle Solar Thermal Power Plants: A Comparative Analysis in Spain." Applied Sciences 15, no. 11 (2025): 6162. https://doi.org/10.3390/app15116162.
Pełny tekst źródłaErmolaev, Vadim, Tatiana Gerasimova, Liliya Kadyrgulova, et al. "Ferrocene-Containing Sterically Hindered Phosphonium Salts." Molecules 23, no. 11 (2018): 2773. http://dx.doi.org/10.3390/molecules23112773.
Pełny tekst źródła