Artykuły w czasopismach na temat „Schumann resonance”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Schumann resonance”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Liu, Jinlai, Jianping Huang, Zhong Li, et al. "Recent Advances and Challenges in Schumann Resonance Observations and Research." Remote Sensing 15, no. 14 (2023): 3557. http://dx.doi.org/10.3390/rs15143557.
Pełny tekst źródłaCano-Domingo, Carlos, Ruxandra Stoean, Nuria Novas, Manuel Fernández-Ros, Gonzalo Joya, and José A. Gázquez. "On the Prospective Use of Deep Learning Systems for Earthquake Forecasting over Schumann Resonances Signals." Engineering Proceedings 18, no. 1 (2022): 1–10. https://doi.org/10.3390/engproc2022018015.
Pełny tekst źródłaCao, Bing Xia, and Xiao Lin Qiao. "Schumann Resonance Measurement Based on Nonlinear Interaction." Key Engineering Materials 439-440 (June 2010): 1294–99. http://dx.doi.org/10.4028/www.scientific.net/kem.439-440.1294.
Pełny tekst źródłaCano, Domingo Carlos, Ruxandra Stoean, Gonzalo Joya, Castellano Nuria Novas, Manuel Fernandez-Ros, and Jose A. Gazquez. "A Machine Learning hourly analysis on the relation the Ionosphere and Schumann Resonance Frequency." Measurement 208 (February 1, 2023): 112426. https://doi.org/10.1016/j.measurement.2022.112426.
Pełny tekst źródłaSilagadze, Z. K. "Schumann resonance transients and the search for gravitational waves." Modern Physics Letters A 33, no. 05 (2018): 1850023. http://dx.doi.org/10.1142/s0217732318500232.
Pełny tekst źródłaInácio, Malmonge Martin*1 &. Inácio Vinicius S. dos Santos2. "SCHUMANN RESONANCES MEASUREMENTS FROM SÃO JOSÉ DOS CAMPOS, BRAZIL." GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES6 6, no. 9 (2019): 1–9. https://doi.org/10.5281/zenodo.3402539.
Pełny tekst źródłaHayakawa, M., K. Ohta, A. P. Nickolaenko, and Y. Ando. "Anomalous effect in Schumann resonance phenomena observed in Japan, possibly associated with the Chi-chi earthquake in Taiwan." Annales Geophysicae 23, no. 4 (2005): 1335–46. http://dx.doi.org/10.5194/angeo-23-1335-2005.
Pełny tekst źródłaAndo, Yoshiaki, and Masashi Hayakawa. "Recent Studies on Schumann Resonance." IEEJ Transactions on Fundamentals and Materials 126, no. 1 (2006): 28–30. http://dx.doi.org/10.1541/ieejfms.126.28.
Pełny tekst źródłaAtsuta, S., T. Ogawa, S. Yamaguchi, et al. "Measurement of Schumann Resonance at Kamioka." Journal of Physics: Conference Series 716 (May 2016): 012020. http://dx.doi.org/10.1088/1742-6596/716/1/012020.
Pełny tekst źródłaNickolaenko, A. P. "Modern aspects of Schumann resonance studies." Journal of Atmospheric and Solar-Terrestrial Physics 59, no. 7 (1997): 805–16. http://dx.doi.org/10.1016/s1364-6826(96)00059-4.
Pełny tekst źródłaLabendz, Daniel. "Investigation of Schumann resonance polarization parameters." Journal of Atmospheric and Solar-Terrestrial Physics 60, no. 18 (1998): 1779–89. http://dx.doi.org/10.1016/s1364-6826(98)00152-7.
Pełny tekst źródłaSekiguchi, M., M. Hayakawa, A. P. Nickolaenko, and Y. Hobara. "Evidence on a link between the intensity of Schumann resonance and global surface temperature." Annales Geophysicae 24, no. 7 (2006): 1809–17. http://dx.doi.org/10.5194/angeo-24-1809-2006.
Pełny tekst źródłaGazquez, Jose A., Manuel Fernandez-Ros, Castellano Nuria Novas, and Salvador Rosa M. García. "Techniques for Schumann Resonance Measurements: A Comparison of Four Amplifiers With a Noise Floor Estimate." IEEE Transactions on Instrumentation and Measurement 64, no. 10 (2015): 2759–68. https://doi.org/10.1109/TIM.2015.2420376.
Pełny tekst źródłaChand, R., M. Israil, and J. Rai. "Schumann resonance frequency variations observed in magnetotelluric data recorded from Garhwal Himalayan region India." Annales Geophysicae 27, no. 9 (2009): 3497–507. http://dx.doi.org/10.5194/angeo-27-3497-2009.
Pełny tekst źródłaA., Persinger Michael, and Saroka Kevin S. "Quantitative Shifts in the Second Harmonic (12-14 Hz) of the Schumann Resonance Are Commensurate with Estimations of the Sleeping Population: Implications of a Causal Relationship." International Journal of Sciences Volume 5, no. 2016-06 (2016): 102–7. https://doi.org/10.5281/zenodo.3349227.
Pełny tekst źródłaNickolaenko, A. P., I. G. Kudintseva, O. Pechony, M. Hayakawa, Y. Hobara, and Y. T. Tanaka. "The effect of a gamma ray flare on Schumann resonances." Annales Geophysicae 30, no. 9 (2012): 1321–29. http://dx.doi.org/10.5194/angeo-30-1321-2012.
Pełny tekst źródłaCano, Domingo Carlos, Castellano Nuria Novas, Manuel Fernandez-Ros, and Jose A. Gazquez. "Segmentation and characteristic extraction for Schumann Resonance transient events." Measurement 194 (May 15, 2024): 110957. https://doi.org/10.1016/j.measurement.2022.110957.
Pełny tekst źródłaNickolaenko, A. P. "Schumann Resonance and Lighting Strokes in Mesosphere." Telecommunications and Radio Engineering 55, no. 4 (2001): 24. http://dx.doi.org/10.1615/telecomradeng.v55.i4.20.
Pełny tekst źródłaCao, Bing-Xia, and Xiao-Lin Qiao. "Observations on Schumann Resonance in Low Ionosphere." Journal of Electronics & Information Technology 32, no. 8 (2010): 2002–5. http://dx.doi.org/10.3724/sp.j.1146.2009.01535.
Pełny tekst źródłaKudintseva, I. G., S. A. Nikolayenko, A. P. Nickolaenko, and Masashi Hayakawa. "SCHUMANN RESONANCE BACKGROUND SIGNAL SYNTHESIZED IN TIME." Telecommunications and Radio Engineering 76, no. 9 (2017): 807–25. http://dx.doi.org/10.1615/telecomradeng.v76.i9.60.
Pełny tekst źródłaRoldugin, V. K., and M. I. Beloglazov. "Schumann resonance amplitude during the Forbush effect." Geomagnetism and Aeronomy 48, no. 6 (2008): 768–74. http://dx.doi.org/10.1134/s0016793208060091.
Pełny tekst źródłaNickolaenko, A. P., and Davis D. Sentman. "Line splitting in the Schumann resonance oscillations." Radio Science 42, no. 2 (2007): n/a. http://dx.doi.org/10.1029/2006rs003473.
Pełny tekst źródłaNickolaenko, A. P. "Efficient three-source model for Schumann resonance." Journal of Atmospheric and Solar-Terrestrial Physics 265 (December 2024): 106395. https://doi.org/10.1016/j.jastp.2024.106395.
Pełny tekst źródłaMitsutake, G., K. Otsuka, M. Hayakawa, M. Sekiguchi, G. Cornélissen, and F. Halberg. "Does Schumann resonance affect our blood pressure?" Biomedicine & Pharmacotherapy 59 (October 2005): S10—S14. http://dx.doi.org/10.1016/s0753-3322(05)80003-4.
Pełny tekst źródłaNickolaenko, Alexander P., Bruno P. Besser, and Konrad Schwingenschuh. "Model computations of Schumann resonance on Titan." Planetary and Space Science 51, no. 13 (2003): 853–62. http://dx.doi.org/10.1016/s0032-0633(03)00119-3.
Pełny tekst źródłaWilliams, E. R. "The Schumann Resonance: A Global Tropical Thermometer." Science 256, no. 5060 (1992): 1184–87. http://dx.doi.org/10.1126/science.256.5060.1184.
Pełny tekst źródłaKudintseva, I. G., S. A. Nikolayenko, A. P. Nickolaenko, and M. Hayakawa. "Schumann resonance background signal synthesized in time." RADIOFIZIKA I ELEKTRONIKA 22, no. 1 (2017): 27–37. http://dx.doi.org/10.15407/rej2017.01.027.
Pełny tekst źródłaCao, B. X., X. L. Qiao, and H. J. Zhou. "Observations on Schumann resonance in industrial area." Electronics Letters 46, no. 11 (2010): 758. http://dx.doi.org/10.1049/el.2010.0130.
Pełny tekst źródłaPersinger, Michael A. "Schumann Resonance Frequencies Found within Quantitative Electroencephalographic Activity: Implications for Earth-Brain Interactions." International Letters of Chemistry, Physics and Astronomy 30 (March 2014): 24–32. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.30.24.
Pełny tekst źródłaPersinger, Michael A. "Schumann Resonance Frequencies Found within Quantitative Electroencephalographic Activity: Implications for Earth-Brain Interactions." International Letters of Chemistry, Physics and Astronomy 30 (March 12, 2014): 24–32. http://dx.doi.org/10.56431/p-ly2br0.
Pełny tekst źródłaFilatov, Aleksandr. "Possibility of using GLM data for studying plasma phenomena." Solar-Terrestrial Physics 8, no. 3 (2022): 76–79. http://dx.doi.org/10.12737/stp-83202212.
Pełny tekst źródłaFilatov, Aleksandr. "Possibility of using GLM data for studying plasma phenomena." Solnechno-Zemnaya Fizika 8, no. 3 (2022): 82–85. http://dx.doi.org/10.12737/szf-83202212.
Pełny tekst źródłaSoler, Ortiz Manuel José, Manuel Fernandez-Ros, Castellano Nuria Novas, and Jose A. Gazquez. "Study of the statistical footprint of lightning activity on the Schumann Resonance." Advances in Space Research 73, no. 5 (2024): 2387–403. https://doi.org/10.1016/j.asr.2023.11.050.
Pełny tekst źródłaHayakawa, M., A. P. Nickolaenko, M. Sekiguchi, K. Yamashita, Y. Ida, and M. Yano. "Anomalous ELF phenomena in the Schumann resonance band as observed at Moshiri (Japan) in possible association with an earthquake in Taiwan." Natural Hazards and Earth System Sciences 8, no. 6 (2008): 1309–16. http://dx.doi.org/10.5194/nhess-8-1309-2008.
Pełny tekst źródłaGázquez, José A., Salvador Rosa María García, Nuria Novas, Manuel Fernández-Ros, Moreno Alberto Jesús Perea, and Francisco Manzano-Agugliaro. "Applied Engineering Using Schumann Resonance for Earthquakes Monitoring." Applied Sciences (Switzerland) 7, no. 11 (2017): 1–19. https://doi.org/10.3390/app7111113.
Pełny tekst źródłaNickolaenko, A. P., and M. Hayakawa. "Universal and local time components in Schumann resonance intensity." Annales Geophysicae 26, no. 4 (2008): 813–22. http://dx.doi.org/10.5194/angeo-26-813-2008.
Pełny tekst źródłaNickolaenko and Hayakawa. "Recent studies of Schumann resonance and ELF transients." Journal of Atmospheric Electricity 27, no. 1 (2007): 19–39. http://dx.doi.org/10.1541/jae.27.19.
Pełny tekst źródłaYatsevich, Nickolaenko, Shvets, and Rabinowicz. "TWO COMPONENT SOURCE MODEL OF SCHUMANN RESONANCE SIGNAL." Journal of Atmospheric Electricity 26, no. 1 (2006): 1–10. http://dx.doi.org/10.1541/jae.26.1.
Pełny tekst źródłaHayakawa, Masashi, Yasuhide Hobara, Kenji Ohta, Jun Izutsu, Alexander P. Nickolaenko, and Valery Sorokin. "Seismogenic Effects in the ELF Schumann Resonance Band." IEEJ Transactions on Fundamentals and Materials 131, no. 9 (2011): 684–90. http://dx.doi.org/10.1541/ieejfms.131.684.
Pełny tekst źródłaGazquez, Jose, Rosa Garcia, Nuria Castellano, Manuel Fernandez-Ros, Alberto-Jesus Perea-Moreno, and Francisco Manzano-Agugliaro. "Applied Engineering Using Schumann Resonance for Earthquakes Monitoring." Applied Sciences 7, no. 11 (2017): 1113. http://dx.doi.org/10.3390/app7111113.
Pełny tekst źródłaYatsevich, E. I., A. P. Nickolaenko, A. V. Shvets, and L. M. Rabinowicz. "Two Component Model of the Schumann Resonance Signal." Telecommunications and Radio Engineering 64, no. 10 (2005): 873–87. http://dx.doi.org/10.1615/telecomradeng.v64.i10.100.
Pełny tekst źródłaIkeda, Akihiro, Teiji Uozumi, Akimasa Yoshikawa, et al. "Characteristics of Schumann Resonance Parameters at Kuju Station." E3S Web of Conferences 20 (2017): 01004. http://dx.doi.org/10.1051/e3sconf/20172001004.
Pełny tekst źródłaHeckman, S. J., E. Williams, and B. Boldi. "Total global lightning inferred from Schumann resonance measurements." Journal of Geophysical Research: Atmospheres 103, no. D24 (1998): 31775–79. http://dx.doi.org/10.1029/98jd02648.
Pełny tekst źródłaTzanis, A., and D. Beamish. "Time domain polarization analysis of Schumann resonance waveforms." Journal of Atmospheric and Terrestrial Physics 49, no. 3 (1987): 217–29. http://dx.doi.org/10.1016/0021-9169(87)90057-2.
Pełny tekst źródłaLorenz, Ralph D., and Alice Le Gall. "Schumann resonance on Titan: A critical Re-assessment." Icarus 351 (November 2020): 113942. http://dx.doi.org/10.1016/j.icarus.2020.113942.
Pełny tekst źródłaBéghin, Christian. "The atypical generation mechanism of Titan's Schumann resonance." Journal of Geophysical Research: Planets 119, no. 3 (2014): 520–31. http://dx.doi.org/10.1002/2013je004569.
Pełny tekst źródłaVerő, J., J. Szendrői, G. SÁtori, and B. Zieger. "On Spectral Methods in Schumann Resonance Data Processing." Acta Geodaetica et Geophysica Hungarica 35, no. 2 (2000): 105–32. http://dx.doi.org/10.1007/bf03325601.
Pełny tekst źródłaTellinghuisen, Joel. "Can resonances occur in the photodissociation continuum of a diatomic molecule? The role of potential discontinuities." Canadian Journal of Chemistry 82, no. 6 (2004): 826–30. http://dx.doi.org/10.1139/v04-047.
Pełny tekst źródłaOrinaitė, Ugnė, Darius Petronaitis, Arvydas Jokimaitis, et al. "Tidal Effects on the Schumann Resonance Amplitudes Recorded by the Global Coherence Monitoring System." Applied Sciences 14, no. 8 (2024): 3332. http://dx.doi.org/10.3390/app14083332.
Pełny tekst źródłaHayakawa, M., A. P. Nickolaenko, Y. P. Galuk, and I. G. Kudintseva. "Manifestations of Nearby Moderate Earthquakes in Schumann Resonance Spectra." INTERNATIONAL JOURNAL OF ELECTRONICS AND APPLIED RESEARCH 7, no. 1 (2020): 1–28. http://dx.doi.org/10.33665/ijear.2020.v07i01.001.
Pełny tekst źródła