Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Schumann resonance.

Artykuły w czasopismach na temat „Schumann resonance”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Schumann resonance”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Liu, Jinlai, Jianping Huang, Zhong Li, et al. "Recent Advances and Challenges in Schumann Resonance Observations and Research." Remote Sensing 15, no. 14 (2023): 3557. http://dx.doi.org/10.3390/rs15143557.

Pełny tekst źródła
Streszczenie:
The theoretical development of Schumann Resonances has spanned more than a century as a form of global natural electromagnetic resonances. In recent years, with the development of electromagnetic detection technology and the improvement in digital processing capabilities, the connection between Schumann Resonances and natural phenomena, such as lightning, earthquakes, and Earth’s climate, has been experimentally and theoretically demonstrated. This article is a review of the relevant literature on Schumann Resonance observation experiments, theoretical research over the years, and a prospect b
Style APA, Harvard, Vancouver, ISO itp.
2

Cano-Domingo, Carlos, Ruxandra Stoean, Nuria Novas, Manuel Fernández-Ros, Gonzalo Joya, and José A. Gázquez. "On the Prospective Use of Deep Learning Systems for Earthquake Forecasting over Schumann Resonances Signals." Engineering Proceedings 18, no. 1 (2022): 1–10. https://doi.org/10.3390/engproc2022018015.

Pełny tekst źródła
Streszczenie:
The relationship between Schumann resonances and earthquakes was proposed more than 50 years ago; however, the experimental support has not been fully established. A considerable amount of recent studies have focused on the relationship between a single earthquake and the Schumann resonance signal variation around this earthquake, obtaining preliminary support for the existence of the link. Nonetheless, they all lack a systematic and general approach. In this research, we propose a novel methodology to detect the presence of relevant earthquakes based on the Schumann resonance. The methodology
Style APA, Harvard, Vancouver, ISO itp.
3

Cao, Bing Xia, and Xiao Lin Qiao. "Schumann Resonance Measurement Based on Nonlinear Interaction." Key Engineering Materials 439-440 (June 2010): 1294–99. http://dx.doi.org/10.4028/www.scientific.net/kem.439-440.1294.

Pełny tekst źródła
Streszczenie:
Schumann Resonance relates with global temperature variations, new geophysics phenomena in the low ionosphere and short-term earthquake prediction etc. In this paper based on the nonlinear modulation model of high frequency and extreme-low frequency electromagnetic waves in low ionosphere, the Schumann Resonance observing is researched. Taking the fair weather electric field in account, the cross modulation index was 4.2×10-4. At the first Schumann Resonance observatory of China, the first 4 peaks of Schumann Resonance respectively at 7, 14, 20, 26Hz were obtained in demodulation spectra of th
Style APA, Harvard, Vancouver, ISO itp.
4

Cano, Domingo Carlos, Ruxandra Stoean, Gonzalo Joya, Castellano Nuria Novas, Manuel Fernandez-Ros, and Jose A. Gazquez. "A Machine Learning hourly analysis on the relation the Ionosphere and Schumann Resonance Frequency." Measurement 208 (February 1, 2023): 112426. https://doi.org/10.1016/j.measurement.2022.112426.

Pełny tekst źródła
Streszczenie:
The Schumann Resonances arise from the constructive interference of dozens of near-simultaneous lightning strikes every second, mostly located in the tropics. Characterizing the Schumann Resonance signal variation is a complex task due to the number of variables affecting the electromagnetic composition of the ionosphere and the Earth. We describe a novel approach for investigating the behavior of this variation by focusing on specific hours of the day. This study further explores this preliminary influence by means of a machine learning framework composed of six conceptually different algorit
Style APA, Harvard, Vancouver, ISO itp.
5

Silagadze, Z. K. "Schumann resonance transients and the search for gravitational waves." Modern Physics Letters A 33, no. 05 (2018): 1850023. http://dx.doi.org/10.1142/s0217732318500232.

Pełny tekst źródła
Streszczenie:
Schumann resonance transients which propagate around the globe can potentially generate a correlated background in widely separated gravitational-wave detectors. We show that due to the distribution of lightning hotspots around the globe, these transients have characteristic time lags, and this feature can be useful to further suppress such a background, especially in searches of the stochastic gravitational-wave background. A brief review of the corresponding literature on Schumann resonances and lightnings is also given.
Style APA, Harvard, Vancouver, ISO itp.
6

Inácio, Malmonge Martin*1 &. Inácio Vinicius S. dos Santos2. "SCHUMANN RESONANCES MEASUREMENTS FROM SÃO JOSÉ DOS CAMPOS, BRAZIL." GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES6 6, no. 9 (2019): 1–9. https://doi.org/10.5281/zenodo.3402539.

Pełny tekst źródła
Streszczenie:
The Schumann resonances (SR) are a set of spectrum peaks in the extremely low natural frequency (ELF) interval. This natural fundamental mode frequency pulsation of 7.8 Hz was discovered and predicted it mathematically in 1952 by German physicist and Professor Winfried Otto Schumann. A new method to observe these peaks near the ground surface were used in this article. The Schumann resonance is not a new phenomenon. Earth has been pulsating exactly at 7.8 Hz fundamental frequency for thousands of years. Schumann resonances are formal electromagnetic resonances, excited by lightning discharges
Style APA, Harvard, Vancouver, ISO itp.
7

Hayakawa, M., K. Ohta, A. P. Nickolaenko, and Y. Ando. "Anomalous effect in Schumann resonance phenomena observed in Japan, possibly associated with the Chi-chi earthquake in Taiwan." Annales Geophysicae 23, no. 4 (2005): 1335–46. http://dx.doi.org/10.5194/angeo-23-1335-2005.

Pełny tekst źródła
Streszczenie:
Abstract. The Schumann resonance phenomenon has been monitored at Nakatsugawa (near Nagoya) in Japan since the beginning of 1999, and due to the occurance of a severe earthquake (so-called Chi-chi earthquake) on 21 September 1999 in Taiwan we have examined our Schumann resonance data at Nakatsugawa during the entire year of 1999. We have found a very anomalous effect in the Schumann resonance, possibly associated with two large land earthquakes (one is the Chi-chi earthquake and another one on 2 November 1999 (Chia-yi earthquake) with a magnitude again greater than 6.0). Conspicuous effects ar
Style APA, Harvard, Vancouver, ISO itp.
8

Ando, Yoshiaki, and Masashi Hayakawa. "Recent Studies on Schumann Resonance." IEEJ Transactions on Fundamentals and Materials 126, no. 1 (2006): 28–30. http://dx.doi.org/10.1541/ieejfms.126.28.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Atsuta, S., T. Ogawa, S. Yamaguchi, et al. "Measurement of Schumann Resonance at Kamioka." Journal of Physics: Conference Series 716 (May 2016): 012020. http://dx.doi.org/10.1088/1742-6596/716/1/012020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Nickolaenko, A. P. "Modern aspects of Schumann resonance studies." Journal of Atmospheric and Solar-Terrestrial Physics 59, no. 7 (1997): 805–16. http://dx.doi.org/10.1016/s1364-6826(96)00059-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Labendz, Daniel. "Investigation of Schumann resonance polarization parameters." Journal of Atmospheric and Solar-Terrestrial Physics 60, no. 18 (1998): 1779–89. http://dx.doi.org/10.1016/s1364-6826(98)00152-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Sekiguchi, M., M. Hayakawa, A. P. Nickolaenko, and Y. Hobara. "Evidence on a link between the intensity of Schumann resonance and global surface temperature." Annales Geophysicae 24, no. 7 (2006): 1809–17. http://dx.doi.org/10.5194/angeo-24-1809-2006.

Pełny tekst źródła
Streszczenie:
Abstract. A correlation is investigated between the intensity of the global electromagnetic oscillations (Schumann resonance) with the planetary surface temperature. The electromagnetic signal was monitored at Moshiri (Japan), and temperature data were taken from surface meteorological observations. The series covers the period from November 1998 to May 2002. The Schumann resonance intensity is found to vary coherently with the global ground temperature in the latitude interval from 45° S to 45° N: the relevant cross-correlation coefficient reaches the value of 0.9. It slightly increases when
Style APA, Harvard, Vancouver, ISO itp.
13

Gazquez, Jose A., Manuel Fernandez-Ros, Castellano Nuria Novas, and Salvador Rosa M. García. "Techniques for Schumann Resonance Measurements: A Comparison of Four Amplifiers With a Noise Floor Estimate." IEEE Transactions on Instrumentation and Measurement 64, no. 10 (2015): 2759–68. https://doi.org/10.1109/TIM.2015.2420376.

Pełny tekst źródła
Streszczenie:
Schumann resonances are very weak natural electromagnetic signals produced in the earth–ionosphere cavity located in the extremely low frequency (ELF) band (7–60 Hz), and the sensors that measure them produce amplitudes of few microvolts. Strong signals from power lines (50–60 Hz) occur in the same frequency range. Amplification techniques play a key role in acquiring resonance modes with the best signal-to-noise (S/N) ratio. This paper presents a study of the various structures of amplification systems that optimize the S/N ratio for the signal of interest. The aim of this p
Style APA, Harvard, Vancouver, ISO itp.
14

Chand, R., M. Israil, and J. Rai. "Schumann resonance frequency variations observed in magnetotelluric data recorded from Garhwal Himalayan region India." Annales Geophysicae 27, no. 9 (2009): 3497–507. http://dx.doi.org/10.5194/angeo-27-3497-2009.

Pełny tekst źródła
Streszczenie:
Abstract. Schumann resonance (SR) frequency variation has been studied using Magnetotelluric (MT) data recorded in one of the world's toughest and generally inaccessible Himalayan terrain for the first time in the author's knowledge. The magnetotelluric data, in the form of orthogonal time varying electric and magnetic field components (Ex, Ey, Bx and By), recorded during 10 March–23 May 2006, in the Himalayan region, India, at elevations between 1228–2747 m above mean sea level (amsl), were used to study the SR frequency variation. Electromagnetic field components, in the form of time series,
Style APA, Harvard, Vancouver, ISO itp.
15

A., Persinger Michael, and Saroka Kevin S. "Quantitative Shifts in the Second Harmonic (12-14 Hz) of the Schumann Resonance Are Commensurate with Estimations of the Sleeping Population: Implications of a Causal Relationship." International Journal of Sciences Volume 5, no. 2016-06 (2016): 102–7. https://doi.org/10.5281/zenodo.3349227.

Pełny tekst źródła
Streszczenie:
Recent spectral power densities of quantitative electroencephalographic measurements of normal brains indicate they reveal peaks that correspond with the fundamental and harmonics of the Schumann Resonance. Coherence between the human brain and Schumann power occurs for about 300 ms every 30 s. We examined the conspicuous diurnal complex variation in Schumann values and the estimated numbers of people asleep at the time globally. The overlap was visibly obvious for the 12-14 Hz (second harmonic), which is the Stage 2 sleep spindle range, with peak-to-peak changes of ~0.1 Hz and 0.1 pT. Residua
Style APA, Harvard, Vancouver, ISO itp.
16

Nickolaenko, A. P., I. G. Kudintseva, O. Pechony, M. Hayakawa, Y. Hobara, and Y. T. Tanaka. "The effect of a gamma ray flare on Schumann resonances." Annales Geophysicae 30, no. 9 (2012): 1321–29. http://dx.doi.org/10.5194/angeo-30-1321-2012.

Pełny tekst źródła
Streszczenie:
Abstract. We describe the ionospheric modification by the SGR 1806-20 gamma flare (27 December 2004) seen in the global electromagnetic (Schumann) resonance. The gamma rays lowered the ionosphere over the dayside of the globe and modified the Schumann resonance spectra. We present the extremely low frequency (ELF) data monitored at the Moshiri observatory, Japan (44.365° N, 142.24° E). Records are compared with the expected modifications, which facilitate detection of the simultaneous abrupt change in the dynamic resonance pattern of the experimental record. The gamma flare modified the curren
Style APA, Harvard, Vancouver, ISO itp.
17

Cano, Domingo Carlos, Castellano Nuria Novas, Manuel Fernandez-Ros, and Jose A. Gazquez. "Segmentation and characteristic extraction for Schumann Resonance transient events." Measurement 194 (May 15, 2024): 110957. https://doi.org/10.1016/j.measurement.2022.110957.

Pełny tekst źródła
Streszczenie:
In this article we propose a novel methodology for obtaining Schumann Resonances’ relevant parameters from ELF transient register. Using this methodology, it is possible to extract a large amount of data and characterize individual transient events and their more relevant features. To use this methodology a new narrow band sensor is presented, centered in the 1st Schumann Resonance mode and specialized in capturing with high precision the associated transient events. The new methodology based on Hilbert transform and Heidler function is presented and used to segm
Style APA, Harvard, Vancouver, ISO itp.
18

Nickolaenko, A. P. "Schumann Resonance and Lighting Strokes in Mesosphere." Telecommunications and Radio Engineering 55, no. 4 (2001): 24. http://dx.doi.org/10.1615/telecomradeng.v55.i4.20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Cao, Bing-Xia, and Xiao-Lin Qiao. "Observations on Schumann Resonance in Low Ionosphere." Journal of Electronics & Information Technology 32, no. 8 (2010): 2002–5. http://dx.doi.org/10.3724/sp.j.1146.2009.01535.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Kudintseva, I. G., S. A. Nikolayenko, A. P. Nickolaenko, and Masashi Hayakawa. "SCHUMANN RESONANCE BACKGROUND SIGNAL SYNTHESIZED IN TIME." Telecommunications and Radio Engineering 76, no. 9 (2017): 807–25. http://dx.doi.org/10.1615/telecomradeng.v76.i9.60.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Roldugin, V. K., and M. I. Beloglazov. "Schumann resonance amplitude during the Forbush effect." Geomagnetism and Aeronomy 48, no. 6 (2008): 768–74. http://dx.doi.org/10.1134/s0016793208060091.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Nickolaenko, A. P., and Davis D. Sentman. "Line splitting in the Schumann resonance oscillations." Radio Science 42, no. 2 (2007): n/a. http://dx.doi.org/10.1029/2006rs003473.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Nickolaenko, A. P. "Efficient three-source model for Schumann resonance." Journal of Atmospheric and Solar-Terrestrial Physics 265 (December 2024): 106395. https://doi.org/10.1016/j.jastp.2024.106395.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Mitsutake, G., K. Otsuka, M. Hayakawa, M. Sekiguchi, G. Cornélissen, and F. Halberg. "Does Schumann resonance affect our blood pressure?" Biomedicine & Pharmacotherapy 59 (October 2005): S10—S14. http://dx.doi.org/10.1016/s0753-3322(05)80003-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Nickolaenko, Alexander P., Bruno P. Besser, and Konrad Schwingenschuh. "Model computations of Schumann resonance on Titan." Planetary and Space Science 51, no. 13 (2003): 853–62. http://dx.doi.org/10.1016/s0032-0633(03)00119-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Williams, E. R. "The Schumann Resonance: A Global Tropical Thermometer." Science 256, no. 5060 (1992): 1184–87. http://dx.doi.org/10.1126/science.256.5060.1184.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Kudintseva, I. G., S. A. Nikolayenko, A. P. Nickolaenko, and M. Hayakawa. "Schumann resonance background signal synthesized in time." RADIOFIZIKA I ELEKTRONIKA 22, no. 1 (2017): 27–37. http://dx.doi.org/10.15407/rej2017.01.027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Cao, B. X., X. L. Qiao, and H. J. Zhou. "Observations on Schumann resonance in industrial area." Electronics Letters 46, no. 11 (2010): 758. http://dx.doi.org/10.1049/el.2010.0130.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Persinger, Michael A. "Schumann Resonance Frequencies Found within Quantitative Electroencephalographic Activity: Implications for Earth-Brain Interactions." International Letters of Chemistry, Physics and Astronomy 30 (March 2014): 24–32. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.30.24.

Pełny tekst źródła
Streszczenie:
Recent measurements of cerebral quantitative electroencephalographic power densities within the first three harmonics of the earth-ionosphere Schumann resonances and the same order of magnitude for both systems electric and magnetic (pT) fields suggest the possibility of direct intercalation or interaction. The phase modulations of the Schumann propagations and those associated with consciousness are very similar. Quantitative solutions from contemporary values for the physical parameters of the human brain and the earth-ionospheric resonances suggest that electromagnetic information maintaine
Style APA, Harvard, Vancouver, ISO itp.
30

Persinger, Michael A. "Schumann Resonance Frequencies Found within Quantitative Electroencephalographic Activity: Implications for Earth-Brain Interactions." International Letters of Chemistry, Physics and Astronomy 30 (March 12, 2014): 24–32. http://dx.doi.org/10.56431/p-ly2br0.

Pełny tekst źródła
Streszczenie:
Recent measurements of cerebral quantitative electroencephalographic power densities within the first three harmonics of the earth-ionosphere Schumann resonances and the same order of magnitude for both systems electric and magnetic (pT) fields suggest the possibility of direct intercalation or interaction. The phase modulations of the Schumann propagations and those associated with consciousness are very similar. Quantitative solutions from contemporary values for the physical parameters of the human brain and the earth-ionospheric resonances suggest that electromagnetic information maintaine
Style APA, Harvard, Vancouver, ISO itp.
31

Filatov, Aleksandr. "Possibility of using GLM data for studying plasma phenomena." Solar-Terrestrial Physics 8, no. 3 (2022): 76–79. http://dx.doi.org/10.12737/stp-83202212.

Pełny tekst źródła
Streszczenie:
The article deals with scientific and technical problems associated with the functionality of the geostationary lightning mapper, which is currently used for meteorological monitoring. Results of the study into the Schumann resonance phenomenon and the technical parameters of the mapper were analyzed simultaneously. A hypothesis is offered which suggests that there are pulsations in the time dependences of the radiation power of lightning activity at frequencies corresponding to Schumann resonance. A new application of the geostationary lightning mapper for studying plasma phenomena is propose
Style APA, Harvard, Vancouver, ISO itp.
32

Filatov, Aleksandr. "Possibility of using GLM data for studying plasma phenomena." Solnechno-Zemnaya Fizika 8, no. 3 (2022): 82–85. http://dx.doi.org/10.12737/szf-83202212.

Pełny tekst źródła
Streszczenie:
The article deals with scientific and technical problems associated with the functionality of the geostationary lightning mapper, which is currently used for meteorological monitoring. Results of the study into the Schumann resonance phenomenon and the technical parameters of the mapper were analyzed simultaneously. A hypothesis is offered which suggests that there are pulsations in the time dependences of the radiation power of lightning activity at frequencies corresponding to Schumann resonance. A new application of the geostationary lightning mapper for studying plasma phenomena is propose
Style APA, Harvard, Vancouver, ISO itp.
33

Soler, Ortiz Manuel José, Manuel Fernandez-Ros, Castellano Nuria Novas, and Jose A. Gazquez. "Study of the statistical footprint of lightning activity on the Schumann Resonance." Advances in Space Research 73, no. 5 (2024): 2387–403. https://doi.org/10.1016/j.asr.2023.11.050.

Pełny tekst źródła
Streszczenie:
The Schumann resonance is an electromagnetic phenomenon, a product of lightning activity inside the earth-ionosphere cavity. Five years of Schumann resonance records are analyzed by a novel methodology that segments the records into time intervals and finds the probability distribution that best describes each segment. Then patterns are extracted from the resulting time series and compared against known patterns of global lightning activity to further test the power of the methodology under study. The Quality of Fit indices show how over 95% of the segments analyzed are properly described by t
Style APA, Harvard, Vancouver, ISO itp.
34

Hayakawa, M., A. P. Nickolaenko, M. Sekiguchi, K. Yamashita, Y. Ida, and M. Yano. "Anomalous ELF phenomena in the Schumann resonance band as observed at Moshiri (Japan) in possible association with an earthquake in Taiwan." Natural Hazards and Earth System Sciences 8, no. 6 (2008): 1309–16. http://dx.doi.org/10.5194/nhess-8-1309-2008.

Pełny tekst źródła
Streszczenie:
Abstract. The ELF observation at Moshiri (geographic coordinates: 44.29° N, 142.21° E) in Hokkaido, Japan, was used to find anomalous phenomena in the Schumann resonance band, possibly associated with a large earthquake (magnitude of 7.8) in Taiwan on 26 December 2006. The Schumann resonance signal (fundamental (n=1), 8 Hz; 2nd harmonic, 14 Hz, 3rd harmonic, 20 Hz, 4th, 26 Hz etc.) is known to be supported by electromagnetic radiation from the global thunderstorms, and the anomaly in this paper is characterized by an increase in intensity at frequencies from the third to fourth Schumann resona
Style APA, Harvard, Vancouver, ISO itp.
35

Gázquez, José A., Salvador Rosa María García, Nuria Novas, Manuel Fernández-Ros, Moreno Alberto Jesús Perea, and Francisco Manzano-Agugliaro. "Applied Engineering Using Schumann Resonance for Earthquakes Monitoring." Applied Sciences (Switzerland) 7, no. 11 (2017): 1–19. https://doi.org/10.3390/app7111113.

Pełny tekst źródła
Streszczenie:
For populations that may be affected, the risks of earthquakes and tsunamis are a major concern worldwide. Therefore, early detection of an event of this type in good time is of the highest priority. The observatories that are capable of detecting Extremely Low Frequency (ELF) waves (<300 Hz) today represent a breakthrough in the early detection and study of such phenomena. In this work, all earthquakes with tsunami associated in history and all existing ELF wave observatories currently located worldwide are represented. It was also noticed how the southern hemisphere lacks coverage in this
Style APA, Harvard, Vancouver, ISO itp.
36

Nickolaenko, A. P., and M. Hayakawa. "Universal and local time components in Schumann resonance intensity." Annales Geophysicae 26, no. 4 (2008): 813–22. http://dx.doi.org/10.5194/angeo-26-813-2008.

Pełny tekst źródła
Streszczenie:
Abstract. We extend the technique suggested by Sentman and Fraser (1991) and discussed by Pechony and Price (2006), the technique for separating the local and universal time variations in the Schumann resonance intensity. Initially, we simulate the resonance oscillations in a uniform Earth-ionosphere cavity with the distribution of lightning strokes based on the OTD satellite data. Different field components were used in the Dayside source model for the Moshiri (Japan, geographic coordinates: 44.365° N, 142.24° E) and Lehta (Karelia, Russia, 64.427° N, 33.974° E) observatories. We use the exte
Style APA, Harvard, Vancouver, ISO itp.
37

Nickolaenko and Hayakawa. "Recent studies of Schumann resonance and ELF transients." Journal of Atmospheric Electricity 27, no. 1 (2007): 19–39. http://dx.doi.org/10.1541/jae.27.19.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Yatsevich, Nickolaenko, Shvets, and Rabinowicz. "TWO COMPONENT SOURCE MODEL OF SCHUMANN RESONANCE SIGNAL." Journal of Atmospheric Electricity 26, no. 1 (2006): 1–10. http://dx.doi.org/10.1541/jae.26.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Hayakawa, Masashi, Yasuhide Hobara, Kenji Ohta, Jun Izutsu, Alexander P. Nickolaenko, and Valery Sorokin. "Seismogenic Effects in the ELF Schumann Resonance Band." IEEJ Transactions on Fundamentals and Materials 131, no. 9 (2011): 684–90. http://dx.doi.org/10.1541/ieejfms.131.684.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Gazquez, Jose, Rosa Garcia, Nuria Castellano, Manuel Fernandez-Ros, Alberto-Jesus Perea-Moreno, and Francisco Manzano-Agugliaro. "Applied Engineering Using Schumann Resonance for Earthquakes Monitoring." Applied Sciences 7, no. 11 (2017): 1113. http://dx.doi.org/10.3390/app7111113.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Yatsevich, E. I., A. P. Nickolaenko, A. V. Shvets, and L. M. Rabinowicz. "Two Component Model of the Schumann Resonance Signal." Telecommunications and Radio Engineering 64, no. 10 (2005): 873–87. http://dx.doi.org/10.1615/telecomradeng.v64.i10.100.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Ikeda, Akihiro, Teiji Uozumi, Akimasa Yoshikawa, et al. "Characteristics of Schumann Resonance Parameters at Kuju Station." E3S Web of Conferences 20 (2017): 01004. http://dx.doi.org/10.1051/e3sconf/20172001004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Heckman, S. J., E. Williams, and B. Boldi. "Total global lightning inferred from Schumann resonance measurements." Journal of Geophysical Research: Atmospheres 103, no. D24 (1998): 31775–79. http://dx.doi.org/10.1029/98jd02648.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Tzanis, A., and D. Beamish. "Time domain polarization analysis of Schumann resonance waveforms." Journal of Atmospheric and Terrestrial Physics 49, no. 3 (1987): 217–29. http://dx.doi.org/10.1016/0021-9169(87)90057-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Lorenz, Ralph D., and Alice Le Gall. "Schumann resonance on Titan: A critical Re-assessment." Icarus 351 (November 2020): 113942. http://dx.doi.org/10.1016/j.icarus.2020.113942.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Béghin, Christian. "The atypical generation mechanism of Titan's Schumann resonance." Journal of Geophysical Research: Planets 119, no. 3 (2014): 520–31. http://dx.doi.org/10.1002/2013je004569.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Verő, J., J. Szendrői, G. SÁtori, and B. Zieger. "On Spectral Methods in Schumann Resonance Data Processing." Acta Geodaetica et Geophysica Hungarica 35, no. 2 (2000): 105–32. http://dx.doi.org/10.1007/bf03325601.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Tellinghuisen, Joel. "Can resonances occur in the photodissociation continuum of a diatomic molecule? The role of potential discontinuities." Canadian Journal of Chemistry 82, no. 6 (2004): 826–30. http://dx.doi.org/10.1139/v04-047.

Pełny tekst źródła
Streszczenie:
Continuum resonances are standard fare in the instructional literature for quantum mechanics, where they arise from the continuity conditions imposed on one-dimensional wavefunctions for piecewise-constant potential energy functions. Such resonance structure weakens progressively as the discontinuity in the potential is smoothed, showing that the structure is specifically attributable to the discontinuity. Since diatomic molecular potential energy curves seldom vary rapidly on the distance scale of the period of the wavefunction, such continuum resonances are not expected in absorption continu
Style APA, Harvard, Vancouver, ISO itp.
49

Orinaitė, Ugnė, Darius Petronaitis, Arvydas Jokimaitis, et al. "Tidal Effects on the Schumann Resonance Amplitudes Recorded by the Global Coherence Monitoring System." Applied Sciences 14, no. 8 (2024): 3332. http://dx.doi.org/10.3390/app14083332.

Pełny tekst źródła
Streszczenie:
The main scientific result of this paper is the demonstration of the fact that tidal effects induced by the Moon affect the Schumann resonance amplitudes measured at magnetometers located at different geographical locations of the Global Coherence Monitoring System. Each magnetometer is paired with the closest monitoring station of the global tidal wave measurement network. This paper introduces the Schumann Resonance Complexity Index (SRCI), computed by using the calibrated H-rank algorithm on the local magnetic field data recorded by each magnetometer of the Global Coherence Monitoring Syste
Style APA, Harvard, Vancouver, ISO itp.
50

Hayakawa, M., A. P. Nickolaenko, Y. P. Galuk, and I. G. Kudintseva. "Manifestations of Nearby Moderate Earthquakes in Schumann Resonance Spectra." INTERNATIONAL JOURNAL OF ELECTRONICS AND APPLIED RESEARCH 7, no. 1 (2020): 1–28. http://dx.doi.org/10.33665/ijear.2020.v07i01.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!