Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Second-Order Cone Programming.

Artykuły w czasopismach na temat „Second-Order Cone Programming”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Second-Order Cone Programming”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Alizadeh, F., and D. Goldfarb. "Second-order cone programming." Mathematical Programming 95, no. 1 (January 1, 2003): 3–51. http://dx.doi.org/10.1007/s10107-002-0339-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kobayashi, Kazuhiro, Sunyoung Kim, and Masakazu Kojima. "SPARSE SECOND ORDER CONE PROGRAMMING FORMULATIONS FOR CONVEX OPTIMIZATION PROBLEMS." Journal of the Operations Research Society of Japan 51, no. 3 (2008): 241–64. http://dx.doi.org/10.15807/jorsj.51.241.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hang, Nguyen T. V., Boris S. Mordukhovich, and M. Ebrahim Sarabi. "Second-order variational analysis in second-order cone programming." Mathematical Programming 180, no. 1-2 (November 3, 2018): 75–116. http://dx.doi.org/10.1007/s10107-018-1345-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Xia, Yu. "Two-dimensional Second-Order Cone Programming." International Journal of Operational Research 5, no. 4 (2009): 468. http://dx.doi.org/10.1504/ijor.2009.025704.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Lobo, Miguel Sousa, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret. "Applications of second-order cone programming." Linear Algebra and its Applications 284, no. 1-3 (November 1998): 193–228. http://dx.doi.org/10.1016/s0024-3795(98)10032-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Averbakh, I., and Y. B. Zhao. "Relaxed robust second-order-cone programming." Applied Mathematics and Computation 210, no. 2 (April 2009): 387–97. http://dx.doi.org/10.1016/j.amc.2009.01.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Wang, Jiani, and Liwei Zhang. "Statistical Inference of Second-Order Cone Programming." Asia-Pacific Journal of Operational Research 35, no. 06 (December 2018): 1850044. http://dx.doi.org/10.1142/s0217595918500446.

Pełny tekst źródła
Streszczenie:
The randomness of the second-order cone programming problems is mainly reflected in the objective function and the constraints both having random vectors. In this paper, we discuss the statistical properties of estimates of the respective optimal value and optimal solutions when the random vectors are estimated by their sample both in the objective function and the constraints, which are based on perturbation analysis theory of second-order cone programming. As an example we consider the problem of minimizing a sum of norms with weights.
Style APA, Harvard, Vancouver, ISO itp.
8

Zhang, Liwei, Shengzhe Gao, and Saoyan Guo. "Statistical Inference of Second-Order Cone Programming." Asia-Pacific Journal of Operational Research 36, no. 02 (April 2019): 1940003. http://dx.doi.org/10.1142/s0217595919400037.

Pełny tekst źródła
Streszczenie:
In this paper, we study the stability of stochastic second-order programming when the probability measure is perturbed. Under the Lipschitz continuity of the objective function and metric regularity of the feasible set-valued mapping, the outer semicontinuity of the optimal solution set and Lipschitz continuity of optimal values are demonstrated. Moreover, we prove that, if the constraint non-degeneracy condition and strong second-order sufficient condition hold at a local minimum point of the original problem, there exists a Lipschitz continuous solution path satisfying the Karush–Kuhn–Tucker
Style APA, Harvard, Vancouver, ISO itp.
9

Liang, Zhizheng. "Feature Scaling via Second-Order Cone Programming." Mathematical Problems in Engineering 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/7347986.

Pełny tekst źródła
Streszczenie:
Feature scaling has attracted considerable attention during the past several decades because of its important role in feature selection. In this paper, a novel algorithm for learning scaling factors of features is proposed. It first assigns a nonnegative scaling factor to each feature of data and then adopts a generalized performance measure to learn the optimal scaling factors. It is of interest to note that the proposed model can be transformed into a convex optimization problem: second-order cone programming (SOCP). Thus the scaling factors of features in our method are globally optimal in
Style APA, Harvard, Vancouver, ISO itp.
10

Alzalg, Baha M. "Stochastic second-order cone programming: Applications models." Applied Mathematical Modelling 36, no. 10 (October 2012): 5122–34. http://dx.doi.org/10.1016/j.apm.2011.12.053.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Lourenço, Bruno F., Masakazu Muramatsu, and Takashi Tsuchiya. "Weak infeasibility in second order cone programming." Optimization Letters 10, no. 8 (December 24, 2015): 1743–55. http://dx.doi.org/10.1007/s11590-015-0982-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Xia, Yu, and Farid Alizadeh. "The method for second order cone programming." Computers & Operations Research 35, no. 5 (May 2008): 1510–38. http://dx.doi.org/10.1016/j.cor.2006.08.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Liu, Xinfu, Zuojun Shen, and Ping Lu. "Entry Trajectory Optimization by Second-Order Cone Programming." Journal of Guidance, Control, and Dynamics 39, no. 2 (February 2016): 227–41. http://dx.doi.org/10.2514/1.g001210.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Bonnans, J. Frédéric, and Héctor Ramírez C. "Perturbation analysis of second-order cone programming problems." Mathematical Programming 104, no. 2-3 (July 14, 2005): 205–27. http://dx.doi.org/10.1007/s10107-005-0613-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Pesavento, M., A. B. Gershman, and Zhi-Quan Luo. "Robust array interpolation using second-order cone programming." IEEE Signal Processing Letters 9, no. 1 (January 2002): 8–11. http://dx.doi.org/10.1109/97.988716.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Tsang, I. W., and J. T. Kwok. "Efficient Hyperkernel Learning Using Second-Order Cone Programming." IEEE Transactions on Neural Networks 17, no. 1 (January 2006): 48–58. http://dx.doi.org/10.1109/tnn.2005.860848.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Alhadi, Mohammad Alabed, and Baha Alzalg. "Stochastic Second-Order Cone Programming: The Equivalent Convex Program." Applied Mathematics & Information Sciences 12, no. 3 (May 1, 2018): 601–6. http://dx.doi.org/10.18576/amis/120315.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Tseng, Paul. "Second‐Order Cone Programming Relaxation of Sensor Network Localization." SIAM Journal on Optimization 18, no. 1 (January 2007): 156–85. http://dx.doi.org/10.1137/050640308.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

López, Julio, and Sebastián Maldonado. "Multi-class second-order cone programming support vector machines." Information Sciences 330 (February 2016): 328–41. http://dx.doi.org/10.1016/j.ins.2015.10.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Yang, Xingtong, and Ming Li. "Free isotropic material optimization via second order cone programming." Computer-Aided Design 115 (October 2019): 52–63. http://dx.doi.org/10.1016/j.cad.2019.05.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Yang, Li, Bo Yu, and YanXi Li. "A homotopy method for nonlinear second-order cone programming." Numerical Algorithms 68, no. 2 (March 20, 2014): 355–65. http://dx.doi.org/10.1007/s11075-014-9848-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Tang, LiPing, Hong Yan, and XinMin Yang. "Second order duality for multiobjective programming with cone constraints." Science China Mathematics 59, no. 7 (May 18, 2016): 1285–306. http://dx.doi.org/10.1007/s11425-016-5147-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Sasakawa, Takashi, and Takashi Tsuchiya. "Optimal Magnetic Shield Design with Second-Order Cone Programming." SIAM Journal on Scientific Computing 24, no. 6 (January 2003): 1930–50. http://dx.doi.org/10.1137/s1064827500380350.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Xia, Yong. "Second order cone programming relaxation for quadratic assignment problems." Optimization Methods and Software 23, no. 3 (June 2008): 441–49. http://dx.doi.org/10.1080/10556780701843405.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Zhong, Ping, and Masao Fukushima. "Second-Order Cone Programming Formulations for Robust Multiclass Classification." Neural Computation 19, no. 1 (January 2007): 258–82. http://dx.doi.org/10.1162/neco.2007.19.1.258.

Pełny tekst źródła
Streszczenie:
Multiclass classification is an important and ongoing research subject in machine learning. Current support vector methods for multiclass classification implicitly assume that the parameters in the optimization problems are known exactly. However, in practice, the parameters have perturbations since they are estimated from the training data, which are usually subject to measurement noise. In this article, we propose linear and nonlinear robust formulations for multiclass classification based on the M-SVM method. The preliminary numerical experiments confirm the robustness of the proposed metho
Style APA, Harvard, Vancouver, ISO itp.
26

Steidl, G., S. Setzer, B. Popilka, and B. Burgeth. "Restoration of matrix fields by second-order cone programming." Computing 81, no. 2-3 (November 2007): 161–78. http://dx.doi.org/10.1007/s00607-007-0247-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Krabbenhoft, K., and A. V. Lyamin. "Computational Cam clay plasticity using second-order cone programming." Computer Methods in Applied Mechanics and Engineering 209-212 (February 2012): 239–49. http://dx.doi.org/10.1016/j.cma.2011.11.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Meng, Jingjing, Ping Cao, Jinsong Huang, Hang Lin, Yu Chen, and Rihong Cao. "Second‐order cone programming formulation of discontinuous deformation analysis." International Journal for Numerical Methods in Engineering 118, no. 5 (January 8, 2019): 243–57. http://dx.doi.org/10.1002/nme.6006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Chua, Chek Beng. "The Primal-Dual Second-Order Cone Approximations Algorithm for Symmetric Cone Programming." Foundations of Computational Mathematics 7, no. 3 (March 23, 2007): 271–302. http://dx.doi.org/10.1007/s10208-004-0149-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Dueri, Daniel, Jing Zhang, and Behcet Açikmese. "Automated Custom Code Generation for Embedded, Real-time Second Order Cone Programming." IFAC Proceedings Volumes 47, no. 3 (2014): 1605–12. http://dx.doi.org/10.3182/20140824-6-za-1003.02736.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Xu, Zhijun, and Jing Zhou. "A Global Optimization Algorithm for Solving Linearly Constrained Quadratic Fractional Problems." Mathematics 9, no. 22 (November 22, 2021): 2981. http://dx.doi.org/10.3390/math9222981.

Pełny tekst źródła
Streszczenie:
This paper first proposes a new and enhanced second order cone programming relaxation using the simultaneous matrix diagonalization technique for the linearly constrained quadratic fractional programming problem. The problem has wide applications in statics, economics and signal processing. Thus, fast and effective algorithm is required. The enhanced second order cone programming relaxation improves the relaxation effect and computational efficiency compared to the classical second order cone programming relaxation. Moreover, although the bound quality of the enhanced second order cone program
Style APA, Harvard, Vancouver, ISO itp.
32

Zhang, Yaling, and Hongwei Liu. "A new projection neural network for linear and convex quadratic second-order cone programming." Journal of Intelligent & Fuzzy Systems 42, no. 4 (March 4, 2022): 2925–37. http://dx.doi.org/10.3233/jifs-210164.

Pełny tekst źródła
Streszczenie:
A new projection neural network approach is presented for the linear and convex quadratic second-order cone programming. In the method, the optimal conditions of the linear and convex second-order cone programming are equivalent to the cone projection equations. A Lyapunov function is given based on the G-norm distance function. Based on the cone projection function, the descent direction of Lyapunov function is used to design the new projection neural network. For the proposed neural network, we give the Lyapunov stability analysis and prove the global convergence. Finally, some numerical exa
Style APA, Harvard, Vancouver, ISO itp.
33

MAO, Zhiwei, Kewei YUAN, and Xianmin WANG. "Second-Order Cone Programming Based Joint Design of OFDM Systems." IEICE Transactions on Communications E94-B, no. 2 (2011): 508–14. http://dx.doi.org/10.1587/transcom.e94.b.508.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Sun, Xin, Baihai Zhang, Runqi Chai, Antonios Tsourdos, and Senchun Chai. "UAV trajectory optimization using chance-constrained second-order cone programming." Aerospace Science and Technology 121 (February 2022): 107283. http://dx.doi.org/10.1016/j.ast.2021.107283.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Inaba, Hiroki, Shinji Mizuno, and Kazuhide Nakata. "ROBUST TRACKING ERROR OPTIMIZATION PROBLEMS BY SECOND-ORDER CONE PROGRAMMING." Transactions of the Operations Research Society of Japan 48 (2005): 12–25. http://dx.doi.org/10.15807/torsj.48.12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Zhixia Yang, and Yingjie Tian. "Second Order Cone Programming Formulations for Handling Data with Perturbation." Journal of Convergence Information Technology 5, no. 9 (November 30, 2010): 267–78. http://dx.doi.org/10.4156/jcit.vol5.issue9.28.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Chi, Xiaoni, and Sanyang Liu. "A non-interior continuation method for second-order cone programming." Optimization 58, no. 8 (November 2009): 965–79. http://dx.doi.org/10.1080/02331930701763421.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

董, 丽. "Smoothing Inexact Newton Method for the Second Order Cone Programming." Advances in Applied Mathematics 04, no. 03 (2015): 271–76. http://dx.doi.org/10.12677/aam.2015.43033.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Gupta, S. K., and D. Dangar. "Duality for second-order symmetric multiobjective programming with cone constraints." International Journal of Mathematics in Operational Research 4, no. 2 (2012): 128. http://dx.doi.org/10.1504/ijmor.2012.046374.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

López, Julio, and Sebastián Maldonado. "Robust twin support vector regression via second-order cone programming." Knowledge-Based Systems 152 (July 2018): 83–93. http://dx.doi.org/10.1016/j.knosys.2018.04.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Huang, Gao, Shiji Song, Jatinder N. D. Gupta, and Cheng Wu. "A second order cone programming approach for semi-supervised learning." Pattern Recognition 46, no. 12 (December 2013): 3548–58. http://dx.doi.org/10.1016/j.patcog.2013.06.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Dorsey, William Mark, Jeffrey O. Coleman, and William R. Pickles. "Uniform circular array pattern synthesis using second‐order cone programming." IET Microwaves, Antennas & Propagation 9, no. 8 (June 2015): 723–27. http://dx.doi.org/10.1049/iet-map.2014.0418.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Maldonado, Sebastián, and Julio López. "Ellipsoidal support vector regression based on second-order cone programming." Neurocomputing 305 (August 2018): 59–69. http://dx.doi.org/10.1016/j.neucom.2018.04.035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

López, Julio, Sebastián Maldonado, and Miguel Carrasco. "Robust nonparallel support vector machines via second-order cone programming." Neurocomputing 364 (October 2019): 227–38. http://dx.doi.org/10.1016/j.neucom.2019.07.072.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Maggioni, F., F. A. Potra, M. I. Bertocchi, and E. Allevi. "Stochastic Second-Order Cone Programming in Mobile Ad Hoc Networks." Journal of Optimization Theory and Applications 143, no. 2 (May 14, 2009): 309–28. http://dx.doi.org/10.1007/s10957-009-9561-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Maldonado, Sebastián, and Julio López. "Alternative second-order cone programming formulations for support vector classification." Information Sciences 268 (June 2014): 328–41. http://dx.doi.org/10.1016/j.ins.2014.01.041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Meng, Jingjing, Xue Zhang, Jinsong Huang, Hongxiang Tang, Hans Mattsson, and Jan Laue. "A smoothed finite element method using second-order cone programming." Computers and Geotechnics 123 (July 2020): 103547. http://dx.doi.org/10.1016/j.compgeo.2020.103547.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Mu, Xuewen, and Yaling Zhang. "A Second-Order Cone Programming Method for Multiuser Detection Problem." Wireless Personal Communications 60, no. 2 (March 17, 2010): 335–44. http://dx.doi.org/10.1007/s11277-010-9947-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Kim, Sunyonga, and Masakazu Kojima. "Second order cone programming relaxation of nonconvex quadratic optimization problems." Optimization Methods and Software 15, no. 3-4 (January 2001): 201–24. http://dx.doi.org/10.1080/10556780108805819.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Kim, Sunyoung, Masakazu Kojima, and Makoto Yamashita. "Second Order Cone Programming Relaxation of a Positive Semidefinite Constraint." Optimization Methods and Software 18, no. 5 (October 2003): 535–41. http://dx.doi.org/10.1080/1055678031000148696.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!