Artykuły w czasopismach na temat „Serine recombinase”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Serine recombinase”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Marshall Stark, W., Martin R. Boocock, Femi J. Olorunniji, and Sally-J. Rowland. "Intermediates in serine recombinase-mediated site-specific recombination." Biochemical Society Transactions 39, no. 2 (2011): 617–22. http://dx.doi.org/10.1042/bst0390617.
Pełny tekst źródłaRice, Phoebe A., Kent W. Mouw, Sherwin P. Montaño, Martin R. Boocock, Sally-J. Rowland, and W. Marshall Stark. "Orchestrating serine resolvases." Biochemical Society Transactions 38, no. 2 (2010): 384–87. http://dx.doi.org/10.1042/bst0380384.
Pełny tekst źródłaMouw, Kent W., Sally-J. Rowland, Mark M. Gajjar, Martin R. Boocock, W. Marshall Stark, and Phoebe A. Rice. "Architecture of a Serine Recombinase-DNA Regulatory Complex." Molecular Cell 30, no. 2 (2008): 145–55. http://dx.doi.org/10.1016/j.molcel.2008.02.023.
Pełny tekst źródłaVan Duyne, Gregory D., and Karen Rutherford. "Large serine recombinase domain structure and attachment site binding." Critical Reviews in Biochemistry and Molecular Biology 48, no. 5 (2013): 476–91. http://dx.doi.org/10.3109/10409238.2013.831807.
Pełny tekst źródłaGaj, T., A. C. Mercer, C. A. Gersbach, R. M. Gordley, and C. F. Barbas. "Structure-guided reprogramming of serine recombinase DNA sequence specificity." Proceedings of the National Academy of Sciences 108, no. 2 (2010): 498–503. http://dx.doi.org/10.1073/pnas.1014214108.
Pełny tekst źródłaKeenholtz, Ross A., Sally-J. Rowland, Martin R. Boocock, W. Marshall Stark, and Phoebe A. Rice. "Structural Basis for Catalytic Activation of a Serine Recombinase." Structure 19, no. 6 (2011): 799–809. http://dx.doi.org/10.1016/j.str.2011.03.017.
Pełny tekst źródłaRutherford, Karen, Kushol Gupta, and Gregory Van Duyne. "Solution Scattering Studies of Large Serine Recombinase-DNA Complexes." Biophysical Journal 104, no. 2 (2013): 368a. http://dx.doi.org/10.1016/j.bpj.2012.11.2046.
Pełny tekst źródłaBibb, Lori A., Maria I. Hancox та Graham F. Hatfull. "Integration and excision by the large serine recombinase φRv1 integrase". Molecular Microbiology 55, № 6 (2005): 1896–910. http://dx.doi.org/10.1111/j.1365-2958.2005.04517.x.
Pełny tekst źródłaSirk, Shannon J., Thomas Gaj, Andreas Jonsson, Andrew C. Mercer, and Carlos F. Barbas. "Expanding the zinc-finger recombinase repertoire: directed evolution and mutational analysis of serine recombinase specificity determinants." Nucleic Acids Research 42, no. 7 (2014): 4755–66. http://dx.doi.org/10.1093/nar/gkt1389.
Pełny tekst źródłaShao, Min, Shashi Kumar, and James G. Thomson. "Precise excision of plastid DNA by the large serine recombinase Bxb1." Plant Biotechnology Journal 12, no. 3 (2013): 322–29. http://dx.doi.org/10.1111/pbi.12139.
Pełny tekst źródłaAskora, Ahmed, Takeru Kawasaki, Makoto Fujie та Takashi Yamada. "Resolvase-like serine recombinase mediates integration/excision in the bacteriophage ϕRSM". Journal of Bioscience and Bioengineering 111, № 2 (2011): 109–16. http://dx.doi.org/10.1016/j.jbiosc.2010.10.001.
Pełny tekst źródłaHiraizumi, Masahiro, Nicholas T. Perry, Matthew G. Durrant, et al. "Structural mechanism of bridge RNA-guided recombination." Nature 630, no. 8018 (2024): 994–1002. http://dx.doi.org/10.1038/s41586-024-07570-2.
Pełny tekst źródłaKeenholtz, Ross A., Kent W. Mouw, Martin R. Boocock, Nan-Sheng Li, Joseph A. Piccirilli, and Phoebe A. Rice. "Arginine as a General Acid Catalyst in Serine Recombinase-mediated DNA Cleavage." Journal of Biological Chemistry 288, no. 40 (2013): 29206–14. http://dx.doi.org/10.1074/jbc.m113.508028.
Pełny tekst źródłaWang, Hongmei, Margaret C. M. Smith, and Peter Mullany. "The Conjugative Transposon Tn5397 Has a Strong Preference for Integration into Its Clostridium difficile Target Site." Journal of Bacteriology 188, no. 13 (2006): 4871–78. http://dx.doi.org/10.1128/jb.00210-06.
Pełny tekst źródłaBland, Michael J., Magaly Ducos-Galand, Marie-Eve Val, and Didier Mazel. "An att site-based recombination reporter system for genome engineering and synthetic DNA assembly." BMC Biotechnology 17, no. 1 (2017): 62. https://doi.org/10.1186/s12896-017-0382-1.
Pełny tekst źródłaRowley, Paul A., та Margaret C. M. Smith. "Role of the N-Terminal Domain of φC31 Integrase in attB-attP Synapsis". Journal of Bacteriology 190, № 20 (2008): 6918–21. http://dx.doi.org/10.1128/jb.00612-08.
Pełny tekst źródłaHartmann, Thomas, Michaela Dümig, Basem M. Jaber та ін. "Validation of a Self-Excising Marker in the Human Pathogen Aspergillus fumigatus by Employing the β-Rec/six Site-Specific Recombination System". Applied and Environmental Microbiology 76, № 18 (2010): 6313–17. http://dx.doi.org/10.1128/aem.00882-10.
Pełny tekst źródłaMandali, Sridhar, Gautam Dhar, Nuraly K. Avliyakulov, Michael J. Haykinson, and Reid C. Johnson. "The site-specific integration reaction of Listeria phage A118 integrase, a serine recombinase." Mobile DNA 4, no. 1 (2013): 2. http://dx.doi.org/10.1186/1759-8753-4-2.
Pełny tekst źródłaLucet, Isabelle S., Fleur E. Tynan, Vicki Adams, Jamie Rossjohn, Dena Lyras, and Julian I. Rood. "Identification of the Structural and Functional Domains of the Large Serine Recombinase TnpX fromClostridium perfringens." Journal of Biological Chemistry 280, no. 4 (2004): 2503–11. http://dx.doi.org/10.1074/jbc.m409702200.
Pełny tekst źródłaBai, H., M. Sun, P. Ghosh, G. F. Hatfull, N. D. F. Grindley, and J. F. Marko. "Single-molecule analysis reveals the molecular bearing mechanism of DNA strand exchange by a serine recombinase." Proceedings of the National Academy of Sciences 108, no. 18 (2011): 7419–24. http://dx.doi.org/10.1073/pnas.1018436108.
Pełny tekst źródłaHerisse, Marion, Jessica L. Porter, Romain Guerillot та ін. "The ΦBT1 large serine recombinase catalyzes DNA integration at pseudo-attB sites in the genus Nocardia". PeerJ 6 (4 травня 2018): e4784. http://dx.doi.org/10.7717/peerj.4784.
Pełny tekst źródłaCombes, Patricia, Rob Till, Sally Bee та Margaret C. M. Smith. "The Streptomyces Genome Contains Multiple Pseudo-attB Sites for the φC31-Encoded Site-Specific Recombination System". Journal of Bacteriology 184, № 20 (2002): 5746–52. http://dx.doi.org/10.1128/jb.184.20.5746-5752.2002.
Pełny tekst źródłaKeenholtz, Ross A., Nigel D. F. Grindley, Graham F. Hatfull, and John F. Marko. "Crossover-site sequence and DNA torsional stress control strand interchanges by the Bxb1 site-specific serine recombinase." Nucleic Acids Research 44, no. 18 (2016): 8921–32. http://dx.doi.org/10.1093/nar/gkw724.
Pełny tekst źródłaAdams, Vicki, Isabelle S. Lucet, Fleur E. Tynan, et al. "Two distinct regions of the large serine recombinase TnpX are required for DNA binding and biological function." Molecular Microbiology 60, no. 3 (2006): 591–601. http://dx.doi.org/10.1111/j.1365-2958.2006.05120.x.
Pełny tekst źródłaYamada, Yohko, Mari Maeda, Mohamed Mahdi Alshahni, Michel Monod, Peter Staib, and Tsuyoshi Yamada. "Flippase (FLP) recombinase-mediated marker recycling in the dermatophyte Arthroderma vanbreuseghemii." Microbiology 160, no. 10 (2014): 2122–35. http://dx.doi.org/10.1099/mic.0.076562-0.
Pełny tekst źródłaWang, Yali, Mengke Guo, Naisu Yang, et al. "Phylogenetic Relationships among TnpB-Containing Mobile Elements in Six Bacterial Species." Genes 14, no. 2 (2023): 523. http://dx.doi.org/10.3390/genes14020523.
Pełny tekst źródłaBuchner, John M., Anne E. Robertson, David J. Poynter, Shelby S. Denniston, and Anna C. Karls. "Piv Site-Specific Invertase Requires a DEDD Motif Analogous to the Catalytic Center of the RuvC Holliday Junction Resolvases." Journal of Bacteriology 187, no. 10 (2005): 3431–37. http://dx.doi.org/10.1128/jb.187.10.3431-3437.2005.
Pełny tekst źródłaRitacco, Christopher J., Thomas A. Steitz, and Jimin Wang. "Exploiting large non-isomorphous differences for phase determination of a G-segment invertase–DNA complex." Acta Crystallographica Section D Biological Crystallography 70, no. 3 (2014): 685–93. http://dx.doi.org/10.1107/s1399004713032392.
Pełny tekst źródłaBidnenko, Vladimir, Lei Shi, Ahasanul Kobir, et al. "B acillus subtilis serine/threonine protein kinase YabT is involved in spore development via phosphorylation of a bacterial recombinase." Molecular Microbiology 88, no. 5 (2013): 921–35. http://dx.doi.org/10.1111/mmi.12233.
Pełny tekst źródłaSenkevich, Tatiana G., Eugene V. Koonin, and Bernard Moss. "Vaccinia virus F16 protein, a predicted catalytically inactive member of the prokaryotic serine recombinase superfamily, is targeted to nucleoli." Virology 417, no. 2 (2011): 334–42. http://dx.doi.org/10.1016/j.virol.2011.06.017.
Pełny tekst źródłaFan, Hsiu-Fang, Bo-Yu Su, Chien-Hui Ma, Paul A. Rowley, and Makkuni Jayaram. "A bipartite thermodynamic-kinetic contribution by an activating mutation to RDF-independent excision by a phage serine integrase." Nucleic Acids Research 48, no. 12 (2020): 6413–30. http://dx.doi.org/10.1093/nar/gkaa401.
Pełny tekst źródłaYang, Qiaoyan, Qian Zhu, Xiaopeng Lu, et al. "G9a coordinates with the RPA complex to promote DNA damage repair and cell survival." Proceedings of the National Academy of Sciences 114, no. 30 (2017): E6054—E6063. http://dx.doi.org/10.1073/pnas.1700694114.
Pełny tekst źródłaZhang, Lin, Xijun Ou, Guoping Zhao та Xiaoming Ding. "Highly Efficient In Vitro Site-Specific Recombination System Based on Streptomyces Phage φBT1 Integrase". Journal of Bacteriology 190, № 19 (2008): 6392–97. http://dx.doi.org/10.1128/jb.00777-08.
Pełny tekst źródłaQiu, Minli, Liudan Tu, Minjing Zhao, et al. "Ataxia-televangelist mutated (ATM)/ ATR serine/threonine kinase (ATR)-mediated RAD51 recombinase (RAD51) promotes osteogenic differentiation and inhibits osteoclastogenesis in osteoporosis." Bioengineered 13, no. 2 (2022): 4201–11. http://dx.doi.org/10.1080/21655979.2022.2026729.
Pełny tekst źródłaOlorunniji, Femi J., Arlene L. McPherson, Hania J. Pavlou, et al. "Nicked-site substrates for a serine recombinase reveal enzyme–DNA communications and an essential tethering role of covalent enzyme–DNA linkages." Nucleic Acids Research 43, no. 12 (2015): 6134–43. http://dx.doi.org/10.1093/nar/gkv521.
Pełny tekst źródłaMurphy, Ronan A., and E. Fidelma Boyd. "Three Pathogenicity Islands of Vibrio cholerae Can Excise from the Chromosome and Form Circular Intermediates." Journal of Bacteriology 190, no. 2 (2007): 636–47. http://dx.doi.org/10.1128/jb.00562-07.
Pełny tekst źródłaHewitt, Susannah, Suzzette Arnal, Ludovic Deriano, David Roth, and Jane Skok. "Control of RAG Cleavage Activity Contributes to Maintaining Genome Stability During V(D)J Recombination." Blood 118, no. 21 (2011): 2416. http://dx.doi.org/10.1182/blood.v118.21.2416.2416.
Pełny tekst źródłaOdekunle, Israel Ifeoluwa, Sydney Remington, Allison Racela, and David J. Seward. "Abstract 7227: An inducible, spatially restricted mouse model of lung cancer." Cancer Research 85, no. 8_Supplement_1 (2025): 7227. https://doi.org/10.1158/1538-7445.am2025-7227.
Pełny tekst źródłaBjørkeng, Eva Katrin, Girum Tadesse Tessema, Eirik Wasmuth Lundblad, et al. "ccrAB Ent serine recombinase genes are widely distributed in the Enterococcus faecium and Enterococcus casseliflavus species groups and are expressed in E. faecium." Microbiology 156, no. 12 (2010): 3624–34. http://dx.doi.org/10.1099/mic.0.041491-0.
Pełny tekst źródłaSible, Emily, Mary Attaway, Tzippora Chwat, et al. "Elucidating the role of ATM in BER and MMR during B cell CSR." Journal of Immunology 206, no. 1_Supplement (2021): 63.17. http://dx.doi.org/10.4049/jimmunol.206.supp.63.17.
Pełny tekst źródłaSible, Emily, Giuseppe Fiorica, Sadia Rahman, Mary Attaway, and Bao Q. Vuong. "Elucidating the role of ATM in BER and MMR during B cell CSR." Journal of Immunology 204, no. 1_Supplement (2020): 151.1. http://dx.doi.org/10.4049/jimmunol.204.supp.151.1.
Pełny tekst źródłaBurgener, Sabrina S., Mathias Baumann, Paola Basilico, Eileen Remold-O’Donnell, Ivo P. Touw, and Charaf Benarafa. "Myeloid conditional deletion and transgenic models reveal a threshold for the neutrophil survival factor Serpinb1." Biological Chemistry 397, no. 9 (2016): 897–905. http://dx.doi.org/10.1515/hsz-2016-0132.
Pełny tekst źródłaSun, Tianhe, та Ursula Storb. "Insertion of Phosphoglycerine Kinase (Pgk)-Neo 5′ of Jλ1 Dramatically Enhances Vjλ1 Rearrangement". Journal of Experimental Medicine 193, № 6 (2001): 699–712. http://dx.doi.org/10.1084/jem.193.6.699.
Pełny tekst źródłaFang, Kuan-Te, Hsin Hung, Nga Yin Sadonna Lau, Jou-Hsi Chi, Deng-Chyang Wu, and Kuang-Hung Cheng. "Development of a Genetically Engineered Mouse Model Recapitulating LKB1 and PTEN Deficiency in Gastric Cancer Pathogenesis." Cancers 15, no. 24 (2023): 5893. http://dx.doi.org/10.3390/cancers15245893.
Pełny tekst źródłaHoevelmeyer, Nadine, Eva Maria Cox, Frank Thomas Wunderlich, and Ari Waisman. "Constitutive AKT activation impairs B cell homeostasis and class switch recombination (P1443)." Journal of Immunology 190, no. 1_Supplement (2013): 174.4. http://dx.doi.org/10.4049/jimmunol.190.supp.174.4.
Pełny tekst źródłaAlvarez Narvaez, Sonsiray, and Susan Sanchez. "Exploring the Accessory Genome of Multidrug-Resistant Rhodococcus equi Clone 2287." Antibiotics 12, no. 11 (2023): 1631. http://dx.doi.org/10.3390/antibiotics12111631.
Pełny tekst źródłaSmith, Margaret C. M., William R. A. Brown, Andrew R. McEwan та Paul A. Rowley. "Site-specific recombination by φC31 integrase and other large serine recombinases". Biochemical Society Transactions 38, № 2 (2010): 388–94. http://dx.doi.org/10.1042/bst0380388.
Pełny tekst źródłaGastineau, Romain, Gert Hansen, Michel Poulin, et al. "Haslea silbo, A Novel Cosmopolitan Species of Blue Diatoms." Biology 10, no. 4 (2021): 328. http://dx.doi.org/10.3390/biology10040328.
Pełny tekst źródłaPaolini-Bertrand, Marianne, Irène Rossitto-Borlat, Elsa Martins, and Oliver Hartley. "RB110 and RB157 antibodies recognize by ELISA specific phosphorylation patterns on CCR5 C-terminal peptides." Antibody Reports 3, no. 3 (2020): e155. http://dx.doi.org/10.24450/journals/abrep.2020.e155.
Pełny tekst źródłaKersulyte, Dangeruta, Awdhesh Kalia, MaoJun Zhang, et al. "Sequence Organization and Insertion Specificity of the Novel Chimeric ISHp609 Transposable Element of Helicobacter pylori." Journal of Bacteriology 186, no. 22 (2004): 7521–28. http://dx.doi.org/10.1128/jb.186.22.7521-7528.2004.
Pełny tekst źródła