Artykuły w czasopismach na temat „Silicon lithium nanowire”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Silicon lithium nanowire”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Sun, Fang, Zhiyuan Tan, Zhengguang Hu, et al. "Ultrathin Silicon Nanowires Produced by a Bi-Metal-Assisted Chemical Etching Method for Highly Stable Lithium-Ion Battery Anodes." Nano 15, no. 06 (2020): 2050076. http://dx.doi.org/10.1142/s1793292020500769.
Pełny tekst źródłaBoone, Donald C. "Quantum Mechanical Comparison between Lithiated and Sodiated Silicon Nanowires." Applied Nano 5, no. 2 (2024): 48–57. http://dx.doi.org/10.3390/applnano5020005.
Pełny tekst źródłaLi, Wenhan. "Performance of Li-ion battery with silicon nanowire in anode." Journal of Physics: Conference Series 2355, no. 1 (2022): 012071. http://dx.doi.org/10.1088/1742-6596/2355/1/012071.
Pełny tekst źródłaVlad, Alexandru, Arava Leela Mohana Reddy, Anakha Ajayan, et al. "Roll up nanowire battery from silicon chips." Proceedings of the National Academy of Sciences 109, no. 38 (2012): 15168–73. http://dx.doi.org/10.1073/pnas.1208638109.
Pełny tekst źródłaKeller, Caroline, Yassine Djezzar, Jingxian Wang, et al. "Easy Diameter Tuning of Silicon Nanowires with Low-Cost SnO2-Catalyzed Growth for Lithium-Ion Batteries." Nanomaterials 12, no. 15 (2022): 2601. http://dx.doi.org/10.3390/nano12152601.
Pełny tekst źródłaTang, Jiajun. "Progress in the application of silicon-based anode nanotechnology in lithium batteries." E3S Web of Conferences 553 (2024): 01007. http://dx.doi.org/10.1051/e3sconf/202455301007.
Pełny tekst źródłaBoone, Donald C. "Density Functional Theory Analysis that Explains the Volume Expansion in Prelithiated Silicon Nanowires." European Journal of Applied Physics 6, no. 2 (2024): 31–35. http://dx.doi.org/10.24018/ejphysics.2024.6.2.305.
Pełny tekst źródłaYan, Zheng. "Applications and Improving Methods of Silicon Nanowires in Lithium-ion Batteries." Highlights in Science, Engineering and Technology 32 (February 12, 2023): 199–205. http://dx.doi.org/10.54097/hset.v32i.5088.
Pełny tekst źródłaLi, Yunsong. "Preparation method and application of silicon nanowires." Highlights in Science, Engineering and Technology 32 (February 12, 2023): 237–44. http://dx.doi.org/10.54097/hset.v32i.5172.
Pełny tekst źródłaSanta Maria, Luigi Jacopo, M. Zain Bin Amjad, Dominika Capkova, Hugh Geaney, and Abinaya M. Sankaran. "Influence of Tin (Sn) Dispersion on the Synthesis of Silicon Nanowires on Graphite Substrates for Li-Ion Batteries Anodes." ECS Meeting Abstracts MA2023-02, no. 8 (2023): 3390. http://dx.doi.org/10.1149/ma2023-0283390mtgabs.
Pełny tekst źródłaHennessy, Aaron, Mei Li, Hugh Geaney, and Kevin M. Ryan. "Lithium Trapping in Silicon Nanowire Anodes for Lithium-Ion Batteries." ECS Meeting Abstracts MA2023-02, no. 65 (2023): 3057. http://dx.doi.org/10.1149/ma2023-02653057mtgabs.
Pełny tekst źródłaBoone, Donald C. "Second Harmonic Generation in Lithiated Silicon Nanowires: Derivations and Computational Methods." European Journal of Applied Physics 3, no. 6 (2021): 36–46. http://dx.doi.org/10.24018/ejphysics.2021.3.6.130.
Pełny tekst źródłaNugroho, Andika Pandu, Naufal Hanif Hawari, Bagas Prakoso, et al. "Vertically Aligned n-Type Silicon Nanowire Array as a Free-Standing Anode for Lithium-Ion Batteries." Nanomaterials 11, no. 11 (2021): 3137. http://dx.doi.org/10.3390/nano11113137.
Pełny tekst źródłaZhang, Baoguo, Ling Tong, Lin Wu, et al. "Design of ultrafine silicon structure for lithium battery and research progress of silicon-carbon composite negative electrode materials." Journal of Physics: Conference Series 2079, no. 1 (2021): 012005. http://dx.doi.org/10.1088/1742-6596/2079/1/012005.
Pełny tekst źródłaXu, Wanli, and John C. Flake. "Composite Silicon Nanowire Anodes for Secondary Lithium-Ion Cells." Journal of The Electrochemical Society 157, no. 1 (2010): A41. http://dx.doi.org/10.1149/1.3251341.
Pełny tekst źródłaXu, Wanli, Sri Sai S. Vegunta, and John C. Flake. "Surface-modified silicon nanowire anodes for lithium-ion batteries." Journal of Power Sources 196, no. 20 (2011): 8583–89. http://dx.doi.org/10.1016/j.jpowsour.2011.05.059.
Pełny tekst źródłaKarki, Khim, Eric Epstein, Jeong-Hyun Cho, et al. "Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes." Nano Letters 12, no. 3 (2012): 1392–97. http://dx.doi.org/10.1021/nl204063u.
Pełny tekst źródłaRuffo, Riccardo, Seung Sae Hong, Candace K. Chan, Robert A. Huggins, and Yi Cui. "Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes." Journal of Physical Chemistry C 113, no. 26 (2009): 11390–98. http://dx.doi.org/10.1021/jp901594g.
Pełny tekst źródłaChockla, Aaron M., Justin T. Harris, Vahid A. Akhavan, et al. "Silicon Nanowire Fabric as a Lithium Ion Battery Electrode Material." Journal of the American Chemical Society 133, no. 51 (2011): 20914–21. http://dx.doi.org/10.1021/ja208232h.
Pełny tekst źródłaHwang, Chihyun, Kangmin Lee, Han-Don Um, Yeongdae Lee, Kwanyong Seo, and Hyun-Kon Song. "Conductive and Porous Silicon Nanowire Anodes for Lithium Ion Batteries." Journal of The Electrochemical Society 164, no. 7 (2017): A1564—A1568. http://dx.doi.org/10.1149/2.1241707jes.
Pełny tekst źródłaTao, Jinming, Xintong Li, Jinye Li, et al. "Compact, High Extinction Ratio, and Low-Loss Polarization Beam Splitter on Lithium-Niobate-On-Insulator Using a Silicon Nitride Nanowire Assisted Waveguide and a Grooved Waveguide." Photonics 9, no. 10 (2022): 779. http://dx.doi.org/10.3390/photonics9100779.
Pełny tekst źródłaHu, Mengqi, Yuhao Wang, and Diwen Ye. "A Timely Review of Lithium-ion Batteries in Electric Vehicles: Progress, Future Opportunities, and Challenges." E3S Web of Conferences 308 (2021): 01015. http://dx.doi.org/10.1051/e3sconf/202130801015.
Pełny tekst źródłaSong, Hucheng, Sheng Wang, Xiaoying Song, et al. "A bottom-up synthetic hierarchical buffer structure of copper silicon nanowire hybrids as ultra-stable and high-rate lithium-ion battery anodes." Journal of Materials Chemistry A 6, no. 17 (2018): 7877–86. http://dx.doi.org/10.1039/c8ta01694a.
Pełny tekst źródłaLin, Kuan-Jiuh. "Preparation of high-efficiency anti-reflective oxide electrodes and their application in biomedical testing and thin-film lithium batteries." Impact 2022, no. 3 (2022): 6–8. http://dx.doi.org/10.21820/23987073.2022.3.6.
Pełny tekst źródłaSchneier, Dan, Nimrod Harpak, Svetlana Menkin, et al. "Analysis of Scale-up Parameters in 3D Silicon-Nanowire Lithium-Battery Anodes." Journal of The Electrochemical Society 167, no. 5 (2020): 050511. http://dx.doi.org/10.1149/1945-7111/ab6f5a.
Pełny tekst źródłaCho, Jeong-Hyun, and S. Tom Picraux. "Silicon Nanowire Degradation and Stabilization during Lithium Cycling by SEI Layer Formation." Nano Letters 14, no. 6 (2014): 3088–95. http://dx.doi.org/10.1021/nl500130e.
Pełny tekst źródłaHuang, Rui, and Jing Zhu. "Silicon nanowire array films as advanced anode materials for lithium-ion batteries." Materials Chemistry and Physics 121, no. 3 (2010): 519–22. http://dx.doi.org/10.1016/j.matchemphys.2010.02.017.
Pełny tekst źródłaXu, Wanli, Sri S. Vegunta, and J. C. Flake. "Modified Solid Electrolyte Interphase of Silicon Nanowire Anodes for Lithium-Ion Batteries." ECS Transactions 33, no. 23 (2019): 55–61. http://dx.doi.org/10.1149/1.3557700.
Pełny tekst źródłaSchneier, Dan, Nimrod Harpak, Svetlana Menkin, et al. "Analysis of Scale-up Parameters in 3D Silicon-Nanowire Lithium-Battery Anodes." ECS Meeting Abstracts MA2020-02, no. 2 (2020): 358. http://dx.doi.org/10.1149/ma2020-022358mtgabs.
Pełny tekst źródłaXie, Yuanyuan, Ming Qiu, Xianfeng Gao, Dongsheng Guan, and Chris Yuan. "Phase field modeling of silicon nanowire based lithium ion battery composite electrode." Electrochimica Acta 186 (December 2015): 542–51. http://dx.doi.org/10.1016/j.electacta.2015.11.022.
Pełny tekst źródłaWu, Zheshan, and Defei Kong. "Comparative life cycle assessment of lithium-ion batteries with lithium metal, silicon nanowire, and graphite anodes." Clean Technologies and Environmental Policy 20, no. 6 (2018): 1233–44. http://dx.doi.org/10.1007/s10098-018-1548-9.
Pełny tekst źródłaKrause, Andreas, Olga Tkacheva, Ahmad Omar, et al. "In Situ Raman Spectroscopy on Silicon Nanowire Anodes Integrated in Lithium Ion Batteries." Journal of The Electrochemical Society 166, no. 3 (2019): A5378—A5385. http://dx.doi.org/10.1149/2.0541903jes.
Pełny tekst źródłaHuang, Rui, Xing Fan, Wanci Shen, and Jing Zhu. "Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes." Applied Physics Letters 95, no. 13 (2009): 133119. http://dx.doi.org/10.1063/1.3238572.
Pełny tekst źródłaKeller, Caroline, Saravanan Karuppiah, Praveen Kumar, et al. "Silicon Nanowire-Graphite Composites As High Energy Anode Materials for Lithium Ion Batteries." ECS Meeting Abstracts MA2020-01, no. 2 (2020): 386. http://dx.doi.org/10.1149/ma2020-012386mtgabs.
Pełny tekst źródłaKohandehghan, Alireza, Peter Kalisvaart, Martin Kupsta, et al. "Magnesium and magnesium-silicide coated silicon nanowire composite anodes for lithium-ion batteries." J. Mater. Chem. A 1, no. 5 (2013): 1600–1612. http://dx.doi.org/10.1039/c2ta00769j.
Pełny tekst źródłaWang, Fenfen, Xianfeng Gao, Lulu Ma, Tao Li, and Chris Yuan. "Sustainability Analysis of Silicon Nanowire Fabrication for High Performance Lithium Ion Battery Anode." Procedia Manufacturing 7 (2017): 151–56. http://dx.doi.org/10.1016/j.promfg.2016.12.040.
Pełny tekst źródłaChakrapani, Vidhya, Florencia Rusli, Micheal A. Filler, and Paul A. Kohl. "Quaternary Ammonium Ionic Liquid Electrolyte for a Silicon Nanowire-Based Lithium Ion Battery." Journal of Physical Chemistry C 115, no. 44 (2011): 22048–53. http://dx.doi.org/10.1021/jp207605w.
Pełny tekst źródłaCho, Jeong-Hyun, and S. Tom Picraux. "Enhanced Lithium Ion Battery Cycling of Silicon Nanowire Anodes by Template Growth to Eliminate Silicon Underlayer Islands." Nano Letters 13, no. 11 (2013): 5740–47. http://dx.doi.org/10.1021/nl4036498.
Pełny tekst źródłaWang, Fenfen, Yelin Deng, and Chris Yuan. "Comparative Life Cycle Assessment of Silicon Nanowire and Silicon Nanotube Based Lithium Ion Batteries for Electric Vehicles." Procedia CIRP 80 (2019): 310–15. http://dx.doi.org/10.1016/j.procir.2019.01.004.
Pełny tekst źródłaCollins, Gearoid A., Seamus Kilian, Hugh Geaney, and Kevin M. Ryan. "A Nanowire Nest Structure Comprising Copper Silicide and Silicon Nanowires for Lithium‐Ion Battery Anodes with High Areal Loading." Small 17, no. 34 (2021): 2102333. http://dx.doi.org/10.1002/smll.202102333.
Pełny tekst źródłaBoles, Steven T., Andreas Sedlmayr, Oliver Kraft, and Reiner Mönig. "In situcycling and mechanical testing of silicon nanowire anodes for lithium-ion battery applications." Applied Physics Letters 100, no. 24 (2012): 243901. http://dx.doi.org/10.1063/1.4729145.
Pełny tekst źródłaCai, Wudi, Hairong He, Lili Miao, and Chujun Zhao. "Modelling the broadband mid-infrared dispersion compensator with hybrid silicon and lithium niobate nanowire." OSA Continuum 1, no. 2 (2018): 736. http://dx.doi.org/10.1364/osac.1.000736.
Pełny tekst źródłaWang, Jiantao, Hui Wang, Bingchang Zhang, Yao Wang, Shigang Lu, and Xiaohong Zhang. "A Stable Flexible Silicon Nanowire Array as Anode for High-Performance Lithium-ion Batteries." Electrochimica Acta 176 (September 2015): 321–26. http://dx.doi.org/10.1016/j.electacta.2015.07.001.
Pełny tekst źródłaCho, Jeong-Hyun, Xianglong Li, and S. Tom Picraux. "The effect of metal silicide formation on silicon nanowire-based lithium-ion battery anode capacity." Journal of Power Sources 205 (May 2012): 467–73. http://dx.doi.org/10.1016/j.jpowsour.2012.01.037.
Pełny tekst źródłaWang, Wei, Miao Tian, Yujie Wei, Se-Hee Lee, Yung-Cheng Lee, and Ronggui Yang. "Binder-free three-dimensional silicon/carbon nanowire networks for high performance lithium-ion battery anodes." Nano Energy 2, no. 5 (2013): 943–50. http://dx.doi.org/10.1016/j.nanoen.2013.03.015.
Pełny tekst źródłaZheng, Hao, Shan Fang, Zhenkun Tong, et al. "Stabilized titanium nitride nanowire supported silicon core–shell nanorods as high capacity lithium-ion anodes." Journal of Materials Chemistry A 3, no. 23 (2015): 12476–81. http://dx.doi.org/10.1039/c5ta02259b.
Pełny tekst źródłaWang, Xin, Lanyan Huang, Yongguang Zhang, et al. "Novel silicon nanowire film on copper foil as high performance anode for lithium-ion batteries." Ionics 24, no. 2 (2017): 373–78. http://dx.doi.org/10.1007/s11581-017-2219-2.
Pełny tekst źródłaSchmerling, Marcus, Daniela Fenske, Fabian Peters, Julian Schwenzel, and Matthias Busse. "Lithiation Behavior of Silicon Nanowire Anodes for Lithium-Ion Batteries: Impact of Functionalization and Porosity." ChemPhysChem 19, no. 1 (2017): 123–29. http://dx.doi.org/10.1002/cphc.201700892.
Pełny tekst źródłaChan, Candace K., Riccardo Ruffo, Seung Sae Hong, and Yi Cui. "Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes." Journal of Power Sources 189, no. 2 (2009): 1132–40. http://dx.doi.org/10.1016/j.jpowsour.2009.01.007.
Pełny tekst źródłaZhou, Hui, Jagjit Nanda, Surendra K. Martha, et al. "Role of Surface Functionality in the Electrochemical Performance of Silicon Nanowire Anodes for Rechargeable Lithium Batteries." ACS Applied Materials & Interfaces 6, no. 10 (2014): 7607–14. http://dx.doi.org/10.1021/am500855a.
Pełny tekst źródła