Artykuły w czasopismach na temat „Site-selective protein dual modification”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Site-selective protein dual modification”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Matos, Maria J., Libby Brown, Barbara Bernardim, Ana Guerreiro, Gonzalo Jiménez-Osés, and Gonçalo J. L. Bernardes. "Sequential dual site-selective protein labelling enabled by lysine modification." Bioorganic & Medicinal Chemistry 28, no. 22 (2020): 115783. http://dx.doi.org/10.1016/j.bmc.2020.115783.
Pełny tekst źródłaEnrique, Gil de Montes, Jiménez-Moreno Ester, L. Oliveira Bruno, et al. "Azabicyclic vinyl sulfones for residue-specific dual protein labelling." Chem. Sci. 10 (March 18, 2019): 4515–22. https://doi.org/10.1039/C9SC00125E.
Pełny tekst źródłaKwan, Terence T. L., Omar Boutureira, Elizabeth C. Frye, et al. "Protein modification via alkyne hydrosilylation using a substoichiometric amount of ruthenium(ii) catalyst." Chemical Science 8, no. 5 (2017): 3871–78. http://dx.doi.org/10.1039/c6sc05313k.
Pełny tekst źródłaCrochet, Amanda P., Mohiuddin M. Kabir, Matthew B. Francis, and Chad D. Paavola. "Site-selective dual modification of periplasmic binding proteins for sensing applications." Biosensors and Bioelectronics 26, no. 1 (2010): 55–61. http://dx.doi.org/10.1016/j.bios.2010.05.012.
Pełny tekst źródłaNathani, Ramiz I., Paul Moody, Vijay Chudasama, Mark E. B. Smith, Richard J. Fitzmaurice, and Stephen Caddick. "A novel approach to the site-selective dual labelling of a protein via chemoselective cysteine modification." Chemical Science 4, no. 9 (2013): 3455. http://dx.doi.org/10.1039/c3sc51333e.
Pełny tekst źródłaGil de Montes, Enrique, Ester Jiménez-Moreno, Bruno L. Oliveira, et al. "Azabicyclic vinyl sulfones for residue-specific dual protein labelling." Chemical Science 10, no. 16 (2019): 4515–22. http://dx.doi.org/10.1039/c9sc00125e.
Pełny tekst źródłaMühlberg, Michaela, Michael G. Hoesl, Christian Kuehne, Jens Dernedde, Nediljko Budisa, and Christian P. R. Hackenberger. "Orthogonal dual-modification of proteins for the engineering of multivalent protein scaffolds." Beilstein Journal of Organic Chemistry 11 (May 13, 2015): 784–91. http://dx.doi.org/10.3762/bjoc.11.88.
Pełny tekst źródłaGopalakrishna, R., and W. B. Anderson. "Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain." Proceedings of the National Academy of Sciences 86, no. 17 (1989): 6758–62. http://dx.doi.org/10.1073/pnas.86.17.6758.
Pełny tekst źródłaLi, Na, Jiren Xu, Boheng Liu, Jeevithan Elango, and Wenhui Wu. "Highly Soluble Mussel Foot Protein Enhances Antioxidant Defense and Cytoprotection via PI3K/Akt and Nrf2/HO-1 Pathways." Antioxidants 14, no. 6 (2025): 644. https://doi.org/10.3390/antiox14060644.
Pełny tekst źródłaLiu, Haidong, Xiao Li, Yin Shi, Zu Ye, and Xiangdong Cheng. "Protein Tyrosine Phosphatase PRL-3: A Key Player in Cancer Signaling." Biomolecules 14, no. 3 (2024): 342. http://dx.doi.org/10.3390/biom14030342.
Pełny tekst źródłaNiwa, Tomoko, Tetsuo Asaki, and Shinya Kimura. "NS-187 (INNO-406), a Bcr-Abl/Lyn Dual Tyrosine Kinase Inhibitor." Analytical Chemistry Insights 2 (January 2007): 117739010700200. http://dx.doi.org/10.4137/117739010700200008.
Pełny tekst źródłaAdeleye, Samuel A., and Srujana S. Yadavalli. "Queuosine biosynthetic enzyme, QueE moonlights as a cell division regulator." PLOS Genetics 20, no. 5 (2024): e1011287. http://dx.doi.org/10.1371/journal.pgen.1011287.
Pełny tekst źródłaCheng, Yu-Che, and Sheau-Yann Shieh. "Deubiquitinating enzyme USP3 controls CHK1 chromatin association and activation." Proceedings of the National Academy of Sciences 115, no. 21 (2018): 5546–51. http://dx.doi.org/10.1073/pnas.1719856115.
Pełny tekst źródłaManahan, Carol L., Madhavi Patnana, Kendall J. Blumer та Maurine E. Linder. "Dual Lipid Modification Motifs in Gαand GγSubunits Are Required for Full Activity of the Pheromone Response Pathway inSaccharomyces cerevisiae". Molecular Biology of the Cell 11, № 3 (2000): 957–68. http://dx.doi.org/10.1091/mbc.11.3.957.
Pełny tekst źródłaImam, Hasan, Mohsin Khan, Nandan S. Gokhale, et al. "N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle." Proceedings of the National Academy of Sciences 115, no. 35 (2018): 8829–34. http://dx.doi.org/10.1073/pnas.1808319115.
Pełny tekst źródłaMa, Qi-Jun, Mei-Hong Sun, Jing Lu, et al. "Phosphorylation of a malate transporter promotes malate excretion and reduces cadmium uptake in apple." Journal of Experimental Botany 71, no. 12 (2020): 3437–49. http://dx.doi.org/10.1093/jxb/eraa121.
Pełny tekst źródłaFirmbach-Kraft, I., and R. Stick. "Analysis of nuclear lamin isoprenylation in Xenopus oocytes: isoprenylation of lamin B3 precedes its uptake into the nucleus." Journal of Cell Biology 129, no. 1 (1995): 17–24. http://dx.doi.org/10.1083/jcb.129.1.17.
Pełny tekst źródłaTo, Kenneth K. W., Enming Xing, Ross C. Larue, and Pui-Kai Li. "BET Bromodomain Inhibitors: Novel Design Strategies and Therapeutic Applications." Molecules 28, no. 7 (2023): 3043. http://dx.doi.org/10.3390/molecules28073043.
Pełny tekst źródłaHirschman, Jodi E., та Duane D. Jenness. "Dual Lipid Modification of the Yeast Gγ Subunit Ste18p Determines Membrane Localization of Gβγ". Molecular and Cellular Biology 19, № 11 (1999): 7705–11. http://dx.doi.org/10.1128/mcb.19.11.7705.
Pełny tekst źródłaBelousova, Natalya, Galina Mikheeva, Juri Gelovani, and Victor Krasnykh. "Modification of Adenovirus Capsid with a Designed Protein Ligand Yields a Gene Vector Targeted to a Major Molecular Marker of Cancer." Journal of Virology 82, no. 2 (2007): 630–37. http://dx.doi.org/10.1128/jvi.01896-07.
Pełny tekst źródłaOzols, J., and J. M. Caron. "Posttranslational modification of tubulin by palmitoylation: II. Identification of sites of palmitoylation." Molecular Biology of the Cell 8, no. 4 (1997): 637–45. http://dx.doi.org/10.1091/mbc.8.4.637.
Pełny tekst źródłaColombo, Sara, Renato Longhi, Stefano Alcaro, et al. "N-myristoylation determines dual targeting of mammalian NADH-cytochrome b(5) reductase to ER and mitochondrial outer membranes by a mechanism of kinetic partitioning." Journal of Cell Biology 168, no. 5 (2005): 735–45. http://dx.doi.org/10.1083/jcb.200407082.
Pełny tekst źródłaWilliamson, Chad D., and Anamaris M. Colberg-Poley. "Intracellular Sorting Signals for Sequential Trafficking of Human Cytomegalovirus UL37 Proteins to the Endoplasmic Reticulum and Mitochondria." Journal of Virology 84, no. 13 (2010): 6400–6409. http://dx.doi.org/10.1128/jvi.00556-10.
Pełny tekst źródłaShimizu, Tatsuhiro, Takafumi Nomachi, Kunihiro Matsumoto, and Naoki Hisamoto. "A cytidine deaminase regulates axon regeneration by modulating the functions of the Caenorhabditis elegans HGF/plasminogen family protein SVH-1." PLOS Genetics 20, no. 7 (2024): e1011367. http://dx.doi.org/10.1371/journal.pgen.1011367.
Pełny tekst źródłaMalanchuk, Oksana, Anna Bdzhola, Sergii Palchevskyi, et al. "Investigating the Regulation of Ribosomal Protein S6 Kinase 1 by CoAlation." International Journal of Molecular Sciences 25, no. 16 (2024): 8747. http://dx.doi.org/10.3390/ijms25168747.
Pełny tekst źródłaLee, Choong-Eun, Tam Tran, Seol-Hee Kim, Ki-Sa Sung, and Cheol-Yong Choi. "Regulation of IL-4-induced STAT6 activation by SUMOylation (P6307)." Journal of Immunology 190, no. 1_Supplement (2013): 184.15. http://dx.doi.org/10.4049/jimmunol.190.supp.184.15.
Pełny tekst źródłaEVANS, Paul C., Huib OVAA, Maureen HAMON, et al. "Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity." Biochemical Journal 378, no. 3 (2004): 727–34. http://dx.doi.org/10.1042/bj20031377.
Pełny tekst źródłaMebatsion, Teshome, Stefan Verstegen, Leonarda T. C. De Vaan, Angela Römer-Oberdörfer, and Carla C. Schrier. "A Recombinant Newcastle Disease Virus with Low-Level V Protein Expression Is Immunogenic and Lacks Pathogenicity for Chicken Embryos." Journal of Virology 75, no. 1 (2001): 420–28. http://dx.doi.org/10.1128/jvi.75.1.420-428.2001.
Pełny tekst źródłaGantz, Valentino M., Nijole Jasinskiene, Olga Tatarenkova, et al. "Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi." Proceedings of the National Academy of Sciences 112, no. 49 (2015): E6736—E6743. http://dx.doi.org/10.1073/pnas.1521077112.
Pełny tekst źródłaZimmer, Markus, Siegfried Scherer та Martin J. Loessner. "Genomic Analysis of Clostridium perfringens Bacteriophage φ3626, Which Integrates into guaA and Possibly Affects Sporulation". Journal of Bacteriology 184, № 16 (2002): 4359–68. http://dx.doi.org/10.1128/jb.184.16.4359-4368.2002.
Pełny tekst źródłaPattabiraman, Vijaya R., Matilde Arévalo Ruiz, Régis Boehringer, et al. "Abstract 2138: Creating next-generation biologics using a novel chemistry platform technology." Cancer Research 82, no. 12_Supplement (2022): 2138. http://dx.doi.org/10.1158/1538-7445.am2022-2138.
Pełny tekst źródłaAlbitar, Obaida, Crystal M. D’Souza, and Ernest A. Adeghate. "Effects of Lipoproteins on Metabolic Health." Nutrients 16, no. 13 (2024): 2156. http://dx.doi.org/10.3390/nu16132156.
Pełny tekst źródłaDeng, Ou, Xueli Li, Vinayak C. Palve, Bin Fang, Damon R. Reed, and Uwe Rix. "Abstract C054: PARP16 modulates MYC expression and susceptibility of Ewing’s Sarcoma cells to PARP1 inhibition." Molecular Cancer Therapeutics 22, no. 12_Supplement (2023): C054. http://dx.doi.org/10.1158/1535-7163.targ-23-c054.
Pełny tekst źródłaNakamura, Fumihiko, Laiqiang Huang, Kersi Pestonjamasp, Elizabeth J. Luna, and Heinz Furthmayr. "Regulation of F-Actin Binding to Platelet Moesin In Vitro by Both Phosphorylation of Threonine 558 and Polyphosphatidylinositides." Molecular Biology of the Cell 10, no. 8 (1999): 2669–85. http://dx.doi.org/10.1091/mbc.10.8.2669.
Pełny tekst źródłaEvans, J. L., B. Quistorff, and L. A. Witters. "Hepatic zonation of acetyl-CoA carboxylase activity." Biochemical Journal 270, no. 3 (1990): 665–72. http://dx.doi.org/10.1042/bj2700665.
Pełny tekst źródłaHoyt, Emily A., Pedro M. S. D. Cal, Bruno L. Oliveira, and Gonçalo J. L. Bernardes. "Contemporary approaches to site-selective protein modification." Nature Reviews Chemistry 3, no. 3 (2019): 147–71. http://dx.doi.org/10.1038/s41570-019-0079-1.
Pełny tekst źródłaLin, Yuya A., Justin M. Chalker, and Benjamin G. Davis. "Olefin Metathesis for Site-Selective Protein Modification." ChemBioChem 10, no. 6 (2009): 959–69. http://dx.doi.org/10.1002/cbic.200900002.
Pełny tekst źródłaGordon, Britten, Elizabeth Muhowski, Janani Ravikrishnan, et al. "Targeting Covalent and Non-Covalent Btki-Resistant CLL Using the Dual Irreversible/Reversible 4 th Generation BTK Inhibitor LP-168." Blood 142, Supplement 1 (2023): 416. http://dx.doi.org/10.1182/blood-2023-178259.
Pełny tekst źródłaBrewster, Richard C., and Alison N. Hulme. "Halomethyl-Triazoles for Rapid, Site-Selective Protein Modification." Molecules 26, no. 18 (2021): 5461. http://dx.doi.org/10.3390/molecules26185461.
Pełny tekst źródłaHamdy, Rania, Bahgat Fayed, Ahmed Mostafa, et al. "Iterated Virtual Screening-Assisted Antiviral and Enzyme Inhibition Assays Reveal the Discovery of Novel Promising Anti-SARS-CoV-2 with Dual Activity." International Journal of Molecular Sciences 22, no. 16 (2021): 9057. http://dx.doi.org/10.3390/ijms22169057.
Pełny tekst źródłaKeijzer, Jordi F., Judith Firet, and Bauke Albada. "Site-selective and inducible acylation of thrombin using aptamer-catalyst conjugates." Chemical Communications 57, no. 96 (2021): 12960–63. http://dx.doi.org/10.1039/d1cc05446e.
Pełny tekst źródłaRosen, Christian B., and Matthew B. Francis. "Targeting the N terminus for site-selective protein modification." Nature Chemical Biology 13, no. 7 (2017): 697–705. http://dx.doi.org/10.1038/nchembio.2416.
Pełny tekst źródłaANTOS, J., and M. FRANCIS. "Transition metal catalyzed methods for site-selective protein modification." Current Opinion in Chemical Biology 10, no. 3 (2006): 253–62. http://dx.doi.org/10.1016/j.cbpa.2006.04.009.
Pełny tekst źródłaCai, Mengyuan, Peng Yin, Ziwen Wang, et al. "Abstract 4401: Dual regulation of frizzled receptors (FZD1/7) by IGF2BP3: A novel oncogenic event promotes stem-like properties and reduces carboplatin chemosensitivity in Triple-negative breast cancer." Cancer Research 85, no. 8_Supplement_1 (2025): 4401. https://doi.org/10.1158/1538-7445.am2025-4401.
Pełny tekst źródłaMoody, Paul, Vijay Chudasama, Ramiz I. Nathani, et al. "A rapid, site-selective and efficient route to the dual modification of DARPins." Chem. Commun. 50, no. 38 (2014): 4898–900. http://dx.doi.org/10.1039/c4cc00053f.
Pełny tekst źródłaScumaci, Domenica, Erika Olivo, Claudia Vincenza Fiumara, et al. "DJ-1 Proteoforms in Breast Cancer Cells: The Escape of Metabolic Epigenetic Misregulation." Cells 9, no. 9 (2020): 1968. http://dx.doi.org/10.3390/cells9091968.
Pełny tekst źródłaAbbas, Sk Jahir, Sabina Yesmin, Sandeepa K. Vittala, et al. "Target Bioconjugation of Protein Through Chemical, Molecular Dynamics, and Artificial Intelligence Approaches." Metabolites 14, no. 12 (2024): 668. https://doi.org/10.3390/metabo14120668.
Pełny tekst źródłaChalker, Justin M., Gonçalo J. L. Bernardes, and Benjamin G. Davis. "A “Tag-and-Modify” Approach to Site-Selective Protein Modification." Accounts of Chemical Research 44, no. 9 (2011): 730–41. http://dx.doi.org/10.1021/ar200056q.
Pełny tekst źródłaShadish, Jared A., and Cole A. DeForest. "Site-Selective Protein Modification: From Functionalized Proteins to Functional Biomaterials." Matter 2, no. 1 (2020): 50–77. http://dx.doi.org/10.1016/j.matt.2019.11.011.
Pełny tekst źródłaElSohly, Adel M., and Matthew B. Francis. "Development of Oxidative Coupling Strategies for Site-Selective Protein Modification." Accounts of Chemical Research 48, no. 7 (2015): 1971–78. http://dx.doi.org/10.1021/acs.accounts.5b00139.
Pełny tekst źródła