Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Soliton de Peregrine.

Artykuły w czasopismach na temat „Soliton de Peregrine”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Soliton de Peregrine”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Van Gorder, Robert A. "Orbital Instability of the Peregrine Soliton." Journal of the Physical Society of Japan 83, no. 5 (2014): 054005. http://dx.doi.org/10.7566/jpsj.83.054005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kibler, B., K. Hammani, J. Fatome, et al. "The Peregrine Soliton Observed At Last." Optics and Photonics News 22, no. 12 (2011): 30. http://dx.doi.org/10.1364/opn.22.12.000030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kibler, B., J. Fatome, C. Finot, et al. "The Peregrine soliton in nonlinear fibre optics." Nature Physics 6, no. 10 (2010): 790–95. http://dx.doi.org/10.1038/nphys1740.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Al Khawaja, U., H. Bahlouli, M. Asad-uz-zaman, and S. M. Al-Marzoug. "Modulational instability analysis of the Peregrine soliton." Communications in Nonlinear Science and Numerical Simulation 19, no. 8 (2014): 2706–14. http://dx.doi.org/10.1016/j.cnsns.2014.01.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Hennig, Dirk, Nikos I. Karachalios, and Jesús Cuevas-Maraver. "The closeness of localized structures between the Ablowitz–Ladik lattice and discrete nonlinear Schrödinger equations: Generalized AL and DNLS systems." Journal of Mathematical Physics 63, no. 4 (2022): 042701. http://dx.doi.org/10.1063/5.0072391.

Pełny tekst źródła
Streszczenie:
The Ablowitz–Ladik system, being one of the few integrable nonlinear lattices, admits a wide class of analytical solutions, ranging from exact spatially localized solitons to rational solutions in the form of the spatiotemporally localized discrete Peregrine soliton. Proving a closeness result between the solutions of the Ablowitz–Ladik system and a wide class of Discrete Nonlinear Schrödinger systems in a sense of a continuous dependence on their initial data, we establish that such small amplitude waveforms may be supported in nonintegrable lattices for significantly large times. Nonintegrab
Style APA, Harvard, Vancouver, ISO itp.
6

Chen, Shihua, and Lian-Yan Song. "Peregrine solitons and algebraic soliton pairs in Kerr media considering space–time correction." Physics Letters A 378, no. 18-19 (2014): 1228–32. http://dx.doi.org/10.1016/j.physleta.2014.02.042.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Yurova, Alla. "A hidden life of Peregrine's soliton: Rouge waves in the oceanic depths." International Journal of Geometric Methods in Modern Physics 11, no. 06 (2014): 1450057. http://dx.doi.org/10.1142/s0219887814500571.

Pełny tekst źródła
Streszczenie:
Although the Peregrine-type solutions of the nonlinear Schrödinger (NLS) equation have long been associated mainly with the infamous "rouge waves" on the surface of the ocean, they might have a much more interesting role in the oceanic depths; in this paper we show that these solutions play an important role in the evolution of the intrathermocline eddies, also known as the "oceanic lenses". In particular, we show that the collapse of a lens is determined by the particular generalization of the Peregrine soliton — the so-called exultons — of the NLS equation. In addition, we introduce a new ma
Style APA, Harvard, Vancouver, ISO itp.
8

Hammani, Kamal, Bertrand Kibler, Christophe Finot, et al. "Peregrine soliton generation and breakup in standard telecommunications fiber." Optics Letters 36, no. 2 (2011): 112. http://dx.doi.org/10.1364/ol.36.000112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Guo, Lehui, Ping Chen, and Jinshou Tian. "Peregrine combs and rogue waves on a bright soliton background." Optik 227 (February 2021): 165455. http://dx.doi.org/10.1016/j.ijleo.2020.165455.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Hussain, Akhtar, Hassan Ali, M. Usman, F. D. Zaman, and Choonkil Park. "Some New Families of Exact Solitary Wave Solutions for Pseudo-Parabolic Type Nonlinear Models." Journal of Mathematics 2024 (March 31, 2024): 1–19. http://dx.doi.org/10.1155/2024/5762147.

Pełny tekst źródła
Streszczenie:
The objective of the current study is to provide a variety of families of soliton solutions to pseudo-parabolic equations that arise in nonsteady flows, hydrostatics, and seepage of fluid through fissured material. We investigate a class of such equations, including the one-dimensional Oskolkov (1D OSK), the Benjamin-Bona-Mahony (BBM), and the Benjamin-Bona-Mahony-Peregrine-Burgers (BBMPB) equation. The Exp (-ϕξ)-expansion method is used for new hyperbolic, trigonometric, rational, exponential, and polynomial function-based solutions. These solutions of the pseudo-parabolic class of partial di
Style APA, Harvard, Vancouver, ISO itp.
11

Essama, Bedel Giscard Onana, Salome Ndjakomo Essiane, Frederic Biya-Motto, Bibiane Mireille Ndi Nnanga, Mohammed Shabat, and Jacques Atangana. "Peregrine Soliton and Akhmediev Breathers in a Chameleon Electrical Transmission Line." Journal of Applied Mathematics and Physics 08, no. 12 (2020): 2775–92. http://dx.doi.org/10.4236/jamp.2020.812205.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Zhang, Yu-Ping, Lan Yu, and Guang-Mei Wei. "Integrable aspects and rogue wave solution of Sasa–Satsuma equation with variable coefficients in the inhomogeneous fiber." Modern Physics Letters B 32, no. 05 (2018): 1850059. http://dx.doi.org/10.1142/s0217984918500598.

Pełny tekst źródła
Streszczenie:
Under investigation with symbolic computation in this paper, is a variable-coefficient Sasa–Satsuma equation (SSE) which can describe the ultra short pulses in optical fiber communications and propagation of deep ocean waves. By virtue of the extended Ablowitz–Kaup–Newell–Segur system, Lax pair for the model is directly constructed. Based on the obtained Lax pair, an auto-Bäcklund transformation is provided, then the explicit one-soliton solution is obtained. Meanwhile, an infinite number of conservation laws in explicit recursion forms are derived to indicate its integrability in the Liouvill
Style APA, Harvard, Vancouver, ISO itp.
13

Sabi'u, Jamilu, Sekson Sirisubtawee, Surattana Sungnul, and Mustafa Inc. "Wave dynamics for the new generalized (3+1)-D Painlevé-type nonlinear evolution equation using efficient techniques." AIMS Mathematics 9, no. 11 (2024): 32366–98. http://dx.doi.org/10.3934/math.20241552.

Pełny tekst źródła
Streszczenie:
<p>In this paper, diverse wave solutions for the newly introduced (3+1)-dimensional Painlevé-type evolution equation were derived using the improved generalized Riccati equation and generalized Kudryashov methods. This equation is now widely used in soliton theory, nonlinear wave theory, and plasma physics to study instabilities and the evolution of plasma waves. Using these methods, combined with wave transformation and homogeneous balancing techniques, we obtained concise and general wave solutions for the Painlevé-type equation. These solutions included rational exponential, trigonome
Style APA, Harvard, Vancouver, ISO itp.
14

Chabchoub, A., S. Neumann, N. P. Hoffmann, and N. Akhmediev. "Spectral properties of the Peregrine soliton observed in a water wave tank." Journal of Geophysical Research: Oceans 117, no. C11 (2012): n/a. http://dx.doi.org/10.1029/2011jc007671.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Su, Qingtang. "Partial Justification of the Peregrine Soliton from the 2D Full Water Waves." Archive for Rational Mechanics and Analysis 237, no. 3 (2020): 1517–613. http://dx.doi.org/10.1007/s00205-020-01535-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Shrira, Victor I., and Vladimir V. Geogjaev. "What makes the Peregrine soliton so special as a prototype of freak waves?" Journal of Engineering Mathematics 67, no. 1-2 (2009): 11–22. http://dx.doi.org/10.1007/s10665-009-9347-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Albalawi, Wedad, Rabia Jahangir, Waqas Masood, Sadah A. Alkhateeb, and Samir A. El-Tantawy. "Electron-Acoustic (Un)Modulated Structures in a Plasma Having (r, q)-Distributed Electrons: Solitons, Super Rogue Waves, and Breathers." Symmetry 13, no. 11 (2021): 2029. http://dx.doi.org/10.3390/sym13112029.

Pełny tekst źródła
Streszczenie:
The propagation of electron-acoustic waves (EAWs) in an unmagnetized plasma, comprising (r,q)-distributed hot electrons, cold inertial electrons, and stationary positive ions, is investigated. Both the unmodulated and modulated EAWs, such as solitary waves, rogue waves (RWs), and breathers are discussed. The Sagdeev potential approach is employed to determine the existence domain of electron acoustic solitary structures and study the perfectly symmetric planar nonlinear unmodulated structures. Moreover, the nonlinear Schrödinger equation (NLSE) is derived and its modulated solutions, including
Style APA, Harvard, Vancouver, ISO itp.
18

Dai, Chao-Qing, and Yue-Yue Wang. "Controllable combined Peregrine soliton and Kuznetsov–Ma soliton in $${\varvec{\mathcal {PT}}}$$ PT -symmetric nonlinear couplers with gain and loss." Nonlinear Dynamics 80, no. 1-2 (2015): 715–21. http://dx.doi.org/10.1007/s11071-015-1900-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Chaachoua Sameut, H., Sakthivinayagam Pattu, U. Al Khawaja, M. Benarous, and H. Belkroukra. "Peregrine Soliton Management of Breathers in Two Coupled Gross–Pitaevskii Equations with External Potential." Physics of Wave Phenomena 28, no. 3 (2020): 305–12. http://dx.doi.org/10.3103/s1541308x20030036.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Liu, Wei. "High-order rogue waves of the Benjamin–Ono equation and the nonlocal nonlinear Schrödinger equation." Modern Physics Letters B 31, no. 29 (2017): 1750269. http://dx.doi.org/10.1142/s0217984917502694.

Pełny tekst źródła
Streszczenie:
High-order rogue wave solutions of the Benjamin–Ono equation and the nonlocal nonlinear Schrödinger equation are derived by employing the bilinear method, which are expressed by simple polynomials. Typical dynamics of these high-order rogue waves are studied by analytical and graphical ways. For the Benjamin–Ono equation, there are two types of rogue waves, namely, bright rogue waves and dark rogue waves. In particular, the fundamental rogue wave pattern is different from the usual fundamental rogue wave patterns in other soliton equations. For the nonlocal nonlinear Schrödinger equation, the
Style APA, Harvard, Vancouver, ISO itp.
21

Sharma, S. K., and H. Bailung. "Observation of hole Peregrine soliton in a multicomponent plasma with critical density of negative ions." Journal of Geophysical Research: Space Physics 118, no. 2 (2013): 919–24. http://dx.doi.org/10.1002/jgra.50111.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Cuevas-Maraver, J., Boris A. Malomed, P. G. Kevrekidis, and D. J. Frantzeskakis. "Stabilization of the Peregrine soliton and Kuznetsov–Ma breathers by means of nonlinearity and dispersion management." Physics Letters A 382, no. 14 (2018): 968–72. http://dx.doi.org/10.1016/j.physleta.2018.02.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Li, Ji-tao, Jin-zhong Han, Yuan-dong Du, and Chao-Qing Dai. "Controllable behaviors of Peregrine soliton with two peaks in a birefringent fiber with higher-order effects." Nonlinear Dynamics 82, no. 3 (2015): 1393–98. http://dx.doi.org/10.1007/s11071-015-2246-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Maleewong, Montri, and Roger H. J. Grimshaw. "Evolution of Water Wave Groups in the Forced Benney–Roskes System." Fluids 8, no. 2 (2023): 52. http://dx.doi.org/10.3390/fluids8020052.

Pełny tekst źródła
Streszczenie:
For weakly nonlinear waves in one space dimension, the nonlinear Schrödinger Equation is widely accepted as a canonical model for the evolution of wave groups described by modulation instability and its soliton and breather solutions. When there is forcing such as that due to wind blowing over the water surface, this can be supplemented with a linear growth term representing linear instability leading to the forced nonlinear Schrödinger Equation. For water waves in two horizontal space dimensions, this is replaced by a forced Benney–Roskes system. This is a two-dimensional nonlinear Schrödinge
Style APA, Harvard, Vancouver, ISO itp.
25

Zhang, Jie-Fang, Ding-Guo Yu, and Mei-Zhen Jin. "Self-similar transformation and excitation of rogue waves for (2+1)-dimensional Zakharov equation." Acta Physica Sinica 71, no. 8 (2022): 084204. http://dx.doi.org/10.7498/aps.71.20211181.

Pełny tekst źródła
Streszczenie:
The search for the excitation of two-dimensional rogue wave in a (2+1)-dimensional nonlinear evolution model is a research hotspot. In this paper, the self-similar transformation of the (2+1)-dimensional Zakharov equation is established, and this equation is transformed into the (1+1)-dimensional nonlinear Schrödinger equation. Based on the similarity transformation and the rational formal solution of the (1+1)-dimensional nonlinear Schrödinger equation, the rogue wave excitation of the (2+1)-dimensional Zakharov equation is obtained by selecting appropriate parameters. We can see that the sha
Style APA, Harvard, Vancouver, ISO itp.
26

Zhang, Xing, Yin-Chuan Zhao, Feng-Hua Qi, and Liu-Ying Cai. "Characteristics of nonautonomous W-shaped soliton and Peregrine comb in a variable-coefficient higher-order nonlinear Schrödinger equation." Superlattices and Microstructures 100 (December 2016): 934–40. http://dx.doi.org/10.1016/j.spmi.2016.10.072.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Li, Ji-tao, Xian-tu Zhang, Ming Meng, Quan-tao Liu, Yue-yue Wang, and Chao-qing Dai. "Control and management of the combined Peregrine soliton and Akhmediev breathers in $${\mathcal {PT}}$$ PT -symmetric coupled waveguides." Nonlinear Dynamics 84, no. 2 (2015): 473–79. http://dx.doi.org/10.1007/s11071-015-2500-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Zhou, Haoqi, Shuwei Xu, and Maohua Li. "Peregrine Rogue Waves Generated by the Interaction and Degeneration of Soliton-Like Solutions: Derivative Nonlinear Schrödinger Equation." Journal of Applied Mathematics and Physics 08, no. 12 (2020): 2824–35. http://dx.doi.org/10.4236/jamp.2020.812208.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Baronio, Fabio, Shihua Chen, and Stefano Trillo. "Resonant radiation from Peregrine solitons." Optics Letters 45, no. 2 (2020): 427. http://dx.doi.org/10.1364/ol.381228.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Wu, Zhen-Kun, Yun-Zhe Zhang, Yi Hu, Feng Wen, Yi-Qi Zhang, and Yan-Peng Zhang. "The Interaction of Peregrine Solitons." Chinese Physics Letters 31, no. 9 (2014): 090502. http://dx.doi.org/10.1088/0256-307x/31/9/090502.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Hu, X., J. Guo, Y. F. Song, L. M. Zhao, L. Li, and D. Y. Tang. "Dissipative peregrine solitons in fiber lasers." Journal of Physics: Photonics 2, no. 3 (2020): 034011. http://dx.doi.org/10.1088/2515-7647/ab95f3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Lu, Dianchen, Aly R. Seadawy, and Iftikhar Ahmed. "Peregrine-like rational solitons and their interaction with kink wave for the resonance nonlinear Schrödinger equation with Kerr law of nonlinearity." Modern Physics Letters B 33, no. 24 (2019): 1950292. http://dx.doi.org/10.1142/s0217984919502920.

Pełny tekst źródła
Streszczenie:
By utilizing the logarithmic transformation and symbolic computation with ansatz functions technique, Peregrine-like rational solitons are obtained for the resonance nonlinear Schrödinger equation (R-NLSE) with Kerr law of nonlinearity. Meanwhile, the interaction between rational solitons and the kink wave is also investigated. The dynamics and many important properties of these obtained solutions are analyzed and briefly described in figures by selecting the appropriate parametric values.
Style APA, Harvard, Vancouver, ISO itp.
33

Wu Da, 武达, 王娟芬 Wang Juanfen, 石佳 Shi Jia, 张朝霞 Zhang Zhaoxia, and 杨玲珍 Yang Lingzhen. "Generation and Transmission of Peregrine Solitons in Doped Fiber." Acta Optica Sinica 37, no. 4 (2017): 0406002. http://dx.doi.org/10.3788/aos201737.0406002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Wazwaz, Abdul-Majid, and Lakhveer Kaur. "Optical solitons and Peregrine solitons for nonlinear Schrödinger equation by variational iteration method." Optik 179 (February 2019): 804–9. http://dx.doi.org/10.1016/j.ijleo.2018.11.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Hoffmann, C., E. G. Charalampidis, D. J. Frantzeskakis, and P. G. Kevrekidis. "Peregrine solitons and gradient catastrophes in discrete nonlinear Schrödinger systems." Physics Letters A 382, no. 42-43 (2018): 3064–70. http://dx.doi.org/10.1016/j.physleta.2018.08.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Zhang, Jie-Fang, Ding-Guo Yu, and Mei-Zhen Jin. "Two-dimensional self-similarity transformation theory and line rogue waves excitation." Acta Physica Sinica 71, no. 1 (2022): 014205. http://dx.doi.org/10.7498/aps.71.20211417.

Pełny tekst źródła
Streszczenie:
A two-dimensional self-similarity transformation theory is established, and the focusing (parabolic) (2 + 1)-dimensional NLS equation is taken as the model. The two-dimensional self-similarity transformation is proposed for converting the focusing (2 + 1)-dimensional NLS equation into the focusing (1 + 1) dimensional NLS equations, and the excitation of its novel line-rogue waves is further investigated. It is found that the spatial coherent structures induced by the Akhmediev breathers (AB) and Kuznetsov-Ma solitons (KMS) also have the short-lived characteristics which are possessed by the li
Style APA, Harvard, Vancouver, ISO itp.
37

Ye, Yanlin, Yi Zhou, Shihua Chen, Fabio Baronio, and Philippe Grelu. "General rogue wave solutions of the coupled Fokas–Lenells equations and non-recursive Darboux transformation." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475, no. 2224 (2019): 20180806. http://dx.doi.org/10.1098/rspa.2018.0806.

Pełny tekst źródła
Streszczenie:
We formulate a non-recursive Darboux transformation technique to obtain the general n th-order rational rogue wave solutions to the coupled Fokas–Lenells system, which is an integrable extension of the noted Manakov system, by considering both the double-root and triple-root situations of the spectral characteristic equation. Based on the explicit fundamental and second-order rogue wave solutions, we demonstrate several interesting rogue wave dynamics, among which are coexisting rogue waves and anomalous Peregrine solitons. Our solutions are generalized to include the complete background-field
Style APA, Harvard, Vancouver, ISO itp.
38

Guan, J., C. J. Zhu, C. Hang, and Y. P. Yang. "Generation and propagation of hyperbolic secant solitons, Peregrine solitons, and breathers in a coherently prepared atomic system." Optics Express 28, no. 21 (2020): 31287. http://dx.doi.org/10.1364/oe.398424.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

González-Gaxiola, O., and Anjan Biswas. "Akhmediev breathers, Peregrine solitons and Kuznetsov-Ma solitons in optical fibers and PCF by Laplace-Adomian decomposition method." Optik 172 (November 2018): 930–39. http://dx.doi.org/10.1016/j.ijleo.2018.07.102.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Pathak, Pallabi, Sumita K. Sharma, Y. Nakamura, and H. Bailung. "Observation of ion acoustic multi-Peregrine solitons in multicomponent plasma with negative ions." Physics Letters A 381, no. 48 (2017): 4011–18. http://dx.doi.org/10.1016/j.physleta.2017.10.046.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

DUAN Ya-juan, 段亚娟, and 宋丽军 SONG Li-jun. "Influence of the Self-Steepening and Raman Gain Effects on the Chirped Peregrine Solitons." Acta Sinica Quantum Optica 23, no. 3 (2017): 270–75. http://dx.doi.org/10.3788/jqo20172303.0009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Mahato, Dipti Kanika, A. Govindarajan, M. Lakshmanan, and Amarendra K. Sarma. "Dispersion managed generation of Peregrine solitons and Kuznetsov-Ma breather in an optical fiber." Physics Letters A 392 (March 2021): 127134. http://dx.doi.org/10.1016/j.physleta.2020.127134.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Uthayakumar, T., L. Al Sakkaf, and U. Al Khawaja. "Peregrine Solitons of the Higher-Order, Inhomogeneous, Coupled, Discrete, and Nonlocal Nonlinear Schrödinger Equations." Frontiers in Physics 8 (December 3, 2020). http://dx.doi.org/10.3389/fphy.2020.596886.

Pełny tekst źródła
Streszczenie:
This study reviews the Peregrine solitons appearing under the framework of a class of nonlinear Schrödinger equations describing the diverse nonlinear systems. The historical perspectives include the various analytical techniques developed for constructing the Peregrine soliton solutions, followed by the derivation of the general breather solution of the fundamental nonlinear Schrödinger equation through Darboux transformation. Subsequently, we collect all forms of nonlinear Schrödinger equations, involving systematically the effects of higher-order nonlinearity, inhomogeneity, external potent
Style APA, Harvard, Vancouver, ISO itp.
44

Caso-Huerta, M., L. Bu, S. Chen, S. Trillo, and F. Baronio. "Peregrine solitons and resonant radiation in cubic and quadratic media." Chaos: An Interdisciplinary Journal of Nonlinear Science 34, no. 7 (2024). http://dx.doi.org/10.1063/5.0216445.

Pełny tekst źródła
Streszczenie:
We present the fascinating phenomena of resonant radiation emitted by transient rogue waves in cubic and quadratic nonlinear media, particularly those shed from Peregrine solitons, one of the main wavepackets used today to model real-world rogue waves. In cubic media, it turns out that the emission of radiation from a Peregrine soliton can be attributed to the presence of higher-order dispersion, but is affected by the intrinsic local longitudinal variation of the soliton wavenumber. In quadratic media, we reveal that a two-color Peregrine rogue wave can resonantly radiate dispersive waves eve
Style APA, Harvard, Vancouver, ISO itp.
45

Coulibaly, Saliya, Camus G. L. Tiofack, and Marcel G. Clerc. "Spatiotemporal Complexity Mediated by Higher-Order Peregrine-Like Extreme Events." Frontiers in Physics 9 (March 22, 2021). http://dx.doi.org/10.3389/fphy.2021.644584.

Pełny tekst źródła
Streszczenie:
The Peregrine soliton is the famous coherent solution of the non-linear Schrödinger equation, which presents many of the characteristics of rogue waves. Usually studied in conservative systems, when dissipative effects of injection and loss of energy are included, these intrigued waves can disappear. If they are preserved, their role in the dynamics is unknown. Here, we consider this solution in the framework of dissipative systems. Using the paradigmatic model of the driven and damped non-linear Schrödinger equation, the profile of a stationary Peregrine-type solution has been found. Hence, t
Style APA, Harvard, Vancouver, ISO itp.
46

Wang, Xiu-Bin. "Exotic dynamics of breather and rogue waves in a coupled nonlinear Schrödinger equation." Modern Physics Letters B, October 30, 2023. http://dx.doi.org/10.1142/s0217984924500829.

Pełny tekst źródła
Streszczenie:
Under investigation in this work is a coupled nonlinear Schrödinger equation (CNLSE), which can be used to describe the dynamics of light beams and pulses in [Formula: see text]-symmetric coupled waveguides. Its breather wave (BW) and rogue wave (RW) solutions are presented here. The BW solutions can be converted into various soliton solutions including the Akhmediev breather, Kuznetsov–Ma soliton breather and Peregrine soliton. The dynamics of the solutions are graphically discussed. Moreover, we observe that the two BWs can evolve into an Akhmediev breather with a Peregrine soliton. We hope
Style APA, Harvard, Vancouver, ISO itp.
47

Karjanto, Natanael. "Peregrine Soliton as a Limiting Behavior of the Kuznetsov-Ma and Akhmediev Breathers." Frontiers in Physics 9 (September 27, 2021). http://dx.doi.org/10.3389/fphy.2021.599767.

Pełny tekst źródła
Streszczenie:
This article discusses a limiting behavior of breather solutions of the focusing nonlinear Schrödinger equation. These breathers belong to the family of solitons on a non-vanishing and constant background, where the continuous-wave envelope serves as a pedestal. The rational Peregrine soliton acts as a limiting behavior of the other two breather solitons, i.e., the Kuznetsov-Ma breather and Akhmediev soliton. Albeit with a phase shift, the latter becomes a nonlinear extension of the homoclinic orbit waveform corresponding to an unstable mode in the modulational instability phenomenon. All brea
Style APA, Harvard, Vancouver, ISO itp.
48

Tikan, Alexey, Stéphane Randoux, Gennady El, Alexander Tovbis, Francois Copie, and Pierre Suret. "Local Emergence of Peregrine Solitons: Experiments and Theory." Frontiers in Physics 8 (February 5, 2021). http://dx.doi.org/10.3389/fphy.2020.599435.

Pełny tekst źródła
Streszczenie:
It has been shown analytically that Peregrine solitons emerge locally from a universal mechanism in the so-called semiclassical limit of the one-dimensional focusing nonlinear Schrödinger equation. Experimentally, this limit corresponds to the strongly nonlinear regime where the dispersion is much weaker than nonlinearity at initial time. We review here evidences of this phenomenon obtained on different experimental platforms. In particular, the spontaneous emergence of coherent structures exhibiting locally the Peregrine soliton behavior has been demonstrated in optical fiber experiments invo
Style APA, Harvard, Vancouver, ISO itp.
49

Chabchoub, Amin, Alexey Slunyaev, Norbert Hoffmann, et al. "The Peregrine Breather on the Zero-Background Limit as the Two-Soliton Degenerate Solution: An Experimental Study." Frontiers in Physics 9 (August 25, 2021). http://dx.doi.org/10.3389/fphy.2021.633549.

Pełny tekst źródła
Streszczenie:
Solitons are coherent structures that describe the nonlinear evolution of wave localizations in hydrodynamics, optics, plasma and Bose-Einstein condensates. While the Peregrine breather is known to amplify a single localized perturbation of a carrier wave of finite amplitude by a factor of three, there is a counterpart solution on zero background known as the degenerate two-soliton which also leads to high amplitude maxima. In this study, we report several observations of such multi-soliton with doubly-localized peaks in a water wave flume. The data collected in this experiment confirm the dis
Style APA, Harvard, Vancouver, ISO itp.
50

Pathak, Pallabi. "Ion Acoustic Peregrine Soliton Under Enhanced Dissipation." Frontiers in Physics 8 (February 19, 2021). http://dx.doi.org/10.3389/fphy.2020.603112.

Pełny tekst źródła
Streszczenie:
The effect of enhanced Landau damping on the evolution of ion acoustic Peregrine soliton in multicomponent plasma with negative ions has been investigated. The experiment is performed in a multidipole double plasma device. To enhance the ion Landau damping, the temperature of the ions is increased by applying a continuous sinusoidal signal of frequency close to the ion plasma frequency ∼1 MHz to the separation grid. The spatial damping rate of the ion acoustic wave is measured by interferometry. The damping rate of ion acoustic wave increases with the increase in voltage of the applied signal.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!