Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Solvable groups.

Książki na temat „Solvable groups”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych książek naukowych na temat „Solvable groups”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj książki z różnych dziedzin i twórz odpowiednie bibliografie.

1

Manz, Olaf. Representations of solvable groups. Cambridge: Cambridge University Press, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Shunkov, V. P. O vlozhenii primarnykh ėlementov v gruppe. Novosibirsk: VO Nauka, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Shunkov, V. P. Mp̳-gruppy. Moskva: "Nauka", 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Bencsath, Katalin A. Lectures on Finitely Generated Solvable Groups. New York, NY: Springer New York, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Bencsath, Katalin A., Marianna C. Bonanome, Margaret H. Dean, and Marcos Zyman. Lectures on Finitely Generated Solvable Groups. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5450-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Cossey, James, and Yong Yang. Characters and Blocks of Solvable Groups. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50706-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Fujiwara, Hidenori, and Jean Ludwig. Harmonic Analysis on Exponential Solvable Lie Groups. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55288-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Korhonen, Mikko. Maximal Solvable Subgroups of Finite Classical Groups. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-62915-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Abels, Herbert. Finite Presentability of S-Arithmetic Groups Compact Presentability of Solvable Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0079708.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Baklouti, Ali, Hidenori Fujiwara, and Jean Ludwig. Representation Theory of Solvable Lie Groups and Related Topics. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82044-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Wang, Xiaolu. The C [asterisk] -algebras of a class of solvable Lie groups. Harlow: Longman Scientific & Technical, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Christensen, Jens Gerlach. Trends in harmonic analysis and its applications: AMS special session on harmonic analysis and its applications : March 29-30, 2014, University of Maryland, Baltimore County, Baltimore, MD. Providence, Rhode Island: American Mathematical Society, 2015.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Pense, Judith. The p-length of a solvable group bounded by conditions on its character degree graph. [s.l.]: [s.n.], 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Characters of Solvable Groups. American Mathematical Society, 2018.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Wolf, Thomas R., and Olaf Manz. Representations of Solvable Groups. Cambridge University Press, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Wolf, Thomas R., and Olaf Manz. Representations of Solvable Groups. Cambridge University Press, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Robinson, Derek J. S. Finiteness Conditions and Generalized Soluble Groups: Part 1. Springer, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Robinson, Derek J. S. Finiteness Conditions and Generalized Soluble Groups: Part 2. Springer London, Limited, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Robinson, Derek J. S. Finiteness Conditions and Generalized Soluble Groups: Part 1. Springer London, Limited, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Robinson, Derek J. S. Finiteness Conditions and Generalized Soluble Groups: Part 2. Springer, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Semeniuk, Christine. Groups with Solvable Word Problems. Creative Media Partners, LLC, 2018.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Zyman, Marcos, Katalin A. A. Bencsath, Marianna C. Bonanome, and Margaret H. Dean. Lectures on Finitely Generated Solvable Groups. Springer, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Bencsath, Katalin A., Marianna C. Bonanome, and Margaret H. Dean. Lectures on Finitely Generated Solvable Groups. Springer, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Li, Cai-Heng, and Binzhou Xia. Factorizations of Almost Simple Groups with a Solvable Factor, and Cayley Graphs of Solvable Groups. American Mathematical Society, 2022.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Maximal Solvable Subgroups of Finite Classical Groups. Springer, 2024.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Fujiwara, Hidenori, and Jean Ludwig. Harmonic Analysis on Exponential Solvable Lie Groups. Springer Japan, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Fujiwara, Hidenori, and Jean Ludwig. Harmonic Analysis on Exponential Solvable Lie Groups. Springer Japan, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Fujiwara, Hidenori, and Jean Ludwig. Harmonic Analysis on Exponential Solvable Lie Groups. Springer, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Abels, Herbert. Finite Presentability of S-Arithmetic Groups. Compact Presentability of Solvable Groups. Springer London, Limited, 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Finite presentability of S-arithmetic groups: Compact presentability of solvable groups. Berlin: Springer-Verlag, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Arnal, Didier, and Bradley Currey III. Representations of Solvable Lie Groups: Basic Theory and Examples. University of Cambridge ESOL Examinations, 2020.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Arnal, Didier, and Bradley Currey. Representations of Solvable Lie Groups: Basic Theory and Examples. Cambridge University Press, 2020.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Baklouti, Ali, Hidenori Fujiwara, and Jean Ludwig. Representation Theory of Solvable Lie Groups and Related Topics. Springer International Publishing AG, 2022.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Representation Theory of Solvable Lie Groups and Related Topics. Springer International Publishing AG, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Group and ring theoretic properties of polycyclic groups. London: Springer, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Wang, Yupeng, Wen-Li Yang, Junpeng Cao, and Kangjie Shi. Off-Diagonal Bethe Ansatz for Exactly Solvable Models. Springer, 2015.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Wang, Yupeng, Wen-Li Yang, Junpeng Cao, and Kangjie Shi. Off-Diagonal Bethe Ansatz for Exactly Solvable Models. Springer, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Wang, Yupeng, Wen-Li Yang, Junpeng Cao, and Kangjie Shi. Off-Diagonal Bethe Ansatz for Exactly Solvable Models. Springer, 2015.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

The C*-algebras of a class of solvable Lie groups. Harlow, Essex, England: Longman Scientific & Technical, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Characters and Blocks of Solvable Groups: A User's Guide to Large Orbit Theorems. Springer, 2024.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Premios de investicación [i.e. investigación] concedidos por la Academia en las secciones de exactas y físicas durante el periodo (1999-2000). [Zaragoza, Spain: Academia de Ciencias Exactas, Físicas, Químicas y Naturales de Zaragoza], 2000.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

The C*- Algebras of a Class of Solvable Lie Groups (Pitman Research Notes in Mathematics 199). Livingstone, Churchill, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Li, Huishi. Noncommutative Polynomial Algebras of Solvable Type and Their Modules: Basic Constructive-Computational Theory and Methods. Taylor & Francis Group, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Noncommutative Polynomial Algebras of Solvable Type and Their Modules: Basic Constructive-Computational Theory and Methods. Taylor & Francis Group, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Geometric Group Theory. American Mathematical Society, 2018.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Abbes, Ahmed, and Michel Gros. Representations of the fundamental group and the torsor of deformations. Local study. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691170282.003.0002.

Pełny tekst źródła
Streszczenie:
This chapter focuses on representations of the fundamental group and the torsor of deformations. It considers the case of an affine scheme of a particular type, qualified also as small by Faltings. It introduces the notion of Dolbeault generalized representation and the companion notion of solvable Higgs module, and then constructs a natural equivalence between these two categories. It proves that this approach generalizes simultaneously Faltings' construction for small generalized representations and Hyodo's theory of p-adic variations of Hodge–Tate structures. The discussion covers the relevant notation and conventions, results on continuous cohomology of profinite groups, objects with group actions, logarithmic geometry lexicon, Faltings' almost purity theorem, Faltings extension, Galois cohomology, Fontaine p-adic infinitesimal thickenings, Higgs–Tate torsors and algebras, Dolbeault representations, and small representations. The chapter also describes the descent of small representations and applications and concludes with an analysis of Hodge–Tate representations.
Style APA, Harvard, Vancouver, ISO itp.
47

New developments in Lie theory and its applications: Seventh workshop in Lie theory and its applications, November 26-December 1, 2000, Cordoba, Argentina. Providence, R.I: American Mathematical Society, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Abbes, Ahmed, and Michel Gros. Representations of the fundamental group and the torsor of deformations. An overview. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691170282.003.0001.

Pełny tekst źródła
Streszczenie:
This chapter provides an overview of a new approach to the p-adic Simpson correspondence, focusing on representations of the fundamental group and the torsor of deformations. The discussion covers the notation and conventions, small generalized representations, the torsor of deformations, Faltings ringed topos, and Dolbeault modules. The chapter begins with a short aside on small generalized representations in the affine case, which will be used as intermediary for the study of Dolbeault representations. It then introduces the notion of generalized Dolbeault representation for a small affine scheme and the companion notion of solvable Higgs module, and constructs a natural equivalence between these two categories. It establishes links between these notions and Faltings smallness conditions and relates this to Hyodo's theory. It also describes the Higgs–Tate algebras and concludes with an analysis of the logical links for a Higgs bundle, between smallness and solvability.
Style APA, Harvard, Vancouver, ISO itp.
49

Local Operators in Integrable Models. American Mathematical Society, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Eckle, Hans-Peter. Models of Quantum Matter. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199678839.001.0001.

Pełny tekst źródła
Streszczenie:
This book focuses on the theory of quantum matter, strongly interacting systems of quantum many–particle physics, particularly on their study using exactly solvable and quantum integrable models with Bethe ansatz methods. Part 1 explores the fundamental methods of statistical physics and quantum many–particle physics required for an understanding of quantum matter. It also presents a selection of the most important model systems to describe quantum matter ranging from the Hubbard model of condensed matter physics to the Rabi model of quantum optics. The remaining five parts of the book examines appropriate special cases of these models with respect to their exact solutions using Bethe ansatz methods for the ground state, finite–size, and finite temperature properties. They also demonstrate the quantum integrability of an exemplary model, the Heisenberg quantum spin chain, within the framework of the quantum inverse scattering method and through the algebraic Bethe ansatz. Further models, whose Bethe ansatz solutions are derived and examined, include the Bose and Fermi gases in one dimension, the one–dimensional Hubbard model, the Kondo model, and the quantum Tavis–Cummings model, the latter a model descendent from the Rabi model.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii