Gotowa bibliografia na temat „Spacelike-timelike Bertrand curve pair”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Spacelike-timelike Bertrand curve pair”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Spacelike-timelike Bertrand curve pair"

1

Öztürk, İskender, Hasan Çakır, and Mustafa Özdemir. "Osculating Mate of a Curve in Minkowski 3-Space." Axioms 14, no. 6 (2025): 468. https://doi.org/10.3390/axioms14060468.

Pełny tekst źródła
Streszczenie:
In this paper, we introduce and develop the concept of osculating curve pairs in the three-dimensional Minkowski space. By defining a vector lying in the intersection of osculating planes of two non-lightlike curves, we characterize osculating mates based on their Frenet frames. We then derive the transformation matrix between these frames and investigate the curvature and torsion relations under varying causal characterizations of the curves—timelike and spacelike. Furthermore, we determine the conditions under which these generalized osculating pairs reduce to well-known curve pairs such as
Style APA, Harvard, Vancouver, ISO itp.
2

Erdem, H. A., A. Uçum, K. İlarslan, and Ç. Camcı. "New approach to timelike Bertrand curves in 3-dimensional Minkowski space." Carpathian Mathematical Publications 15, no. 2 (2023): 482–94. http://dx.doi.org/10.15330/cmp.15.2.482-494.

Pełny tekst źródła
Streszczenie:
In the theory of curves in Euclidean $3$-space, it is well known that a curve $\beta $ is said to be a Bertrand curve if for another curve $\beta^{\star}$ there exists a one-to-one correspondence between $\beta $ and $\beta^{\star}$ such that both curves have common principal normal line. These curves have been studied in different spaces over a long period of time and found wide application in different areas. In this article, the conditions for a timelike curve to be Bertrand curve are obtained by using a new approach in contrast to the well-known classical approach for Bertrand curves in Mi
Style APA, Harvard, Vancouver, ISO itp.
3

BİLİCİ, Mustafa. "A Survey on Timelike-Spacelike Involute-Evolute Curve Pair." Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 16, no. 1 (2023): 49–57. http://dx.doi.org/10.18185/erzifbed.1129800.

Pełny tekst źródła
Streszczenie:
This paper concentrates on the requirements of being an integral curve for the geodesic spray of the natural lift curves of spherical indicatrices of the timelike-spacelike involute-evolute curve pair in Lorentz 3-space. In addition, the obtained results were supported by one example.
Style APA, Harvard, Vancouver, ISO itp.
4

Suleyman, SENYURT, and Faruk CALISKAN Omer. "The Natural Lift Curves and Geodesic Curvatures of the Spherical Indicatrices of The Spacelike-Timelike Bertrand Curve Pair." May 3, 2014. https://doi.org/10.5281/zenodo.822172.

Pełny tekst źródła
Streszczenie:
It is well known that many studies related to the differential geometry of curves have been made. Especially, by establishing relations between the Frenet Frames in mutual points of two curves several theories have been obtained.
Style APA, Harvard, Vancouver, ISO itp.
5

Almoneef, A. A., and R. A. Abdel-Baky. "Timelike surfaces with Bertrand geodesic curves in Minkowski 3–space." AIP Advances 14, no. 7 (2024). http://dx.doi.org/10.1063/5.0217646.

Pełny tekst źródła
Streszczenie:
Geodesic curves on a surface play an essential role in reasonable implementation. A curve on a surface is a geodesic curve if its principal normal vector is aligned with the surface normal. Using the Serret–Frenet frame, the timelike (TL) surfaces can be specified as linear combinations of the components of the local frames in Minkowski 3–space E13. With these parametric representations, we obtained the indispensable and required events for the specified Bertrand (B) curves to be the geodesic curves on these surfaces. Afterword, the conclusion regarding the TL ruled surface is also made. Final
Style APA, Harvard, Vancouver, ISO itp.
6

Suleyman, SENYURT, and DEMET Selma. "Timelike-Spacelike Mannheim Pair Curves Spherical Indicators Geodesic Curvatures and Natural Lifts." May 10, 2015. https://doi.org/10.5281/zenodo.822201.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Mustafa, Bilici, Ergun Evren, and Calıskan Mustafa. "A New Approach to Natural Lift Curves of The Spherical Indicatrices of Timelike Bertrand Mate of a Spacelike Curve in Minkowski 3-Space." April 21, 2015. https://doi.org/10.5281/zenodo.815120.

Pełny tekst źródła
Streszczenie:
Bertrand curves are one of the associated curve pairs for which at the corresponding points of the curves one of the Frenet vectors of a curve coincides with the one of the Frenet vectors of the other curve.
Style APA, Harvard, Vancouver, ISO itp.
8

Erdoğdu, Melek, and Ayşe Yavuz. "On Backlund transformation and motion of null Cartan curves." International Journal of Geometric Methods in Modern Physics 19, no. 01 (2021). http://dx.doi.org/10.1142/s0219887822500141.

Pełny tekst źródła
Streszczenie:
The main scope of this paper is to examine null Cartan curves especially the ones with constant torsion. In accordance with this scope, the position vector of a null Cartan curve is stated by a linear combination of the vector fields of its pseudo-orthogonal frame with differentiable functions. However, the most important difference that distinguishes this study from the other studies is that the Bertrand curve couples (timelike, spacelike or null) of null Cartan curves are also examined. Consequently, it is seen that all kinds of Bertrand couples of a given null Cartan curve with constant cur
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!