Artykuły w czasopismach na temat „Sparse Matrix Storage Formats”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Sparse Matrix Storage Formats”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Langr, Daniel, and Pavel Tvrdik. "Evaluation Criteria for Sparse Matrix Storage Formats." IEEE Transactions on Parallel and Distributed Systems 27, no. 2 (2016): 428–40. http://dx.doi.org/10.1109/tpds.2015.2401575.
Pełny tekst źródłaMUKADDES, ABUL MUKID MOHAMMAD, MASAO OGINO, and RYUJI SHIOYA. "PERFORMANCE EVALUATION OF DOMAIN DECOMPOSITION METHOD WITH SPARSE MATRIX STORAGE SCHEMES IN MODERN SUPERCOMPUTER." International Journal of Computational Methods 11, supp01 (2014): 1344007. http://dx.doi.org/10.1142/s0219876213440076.
Pełny tekst źródłaChen, Shizhao, Jianbin Fang, Chuanfu Xu, and Zheng Wang. "Adaptive Hybrid Storage Format for Sparse Matrix–Vector Multiplication on Multi-Core SIMD CPUs." Applied Sciences 12, no. 19 (2022): 9812. http://dx.doi.org/10.3390/app12199812.
Pełny tekst źródłaSanderson, Conrad, and Ryan Curtin. "Practical Sparse Matrices in C++ with Hybrid Storage and Template-Based Expression Optimisation." Mathematical and Computational Applications 24, no. 3 (2019): 70. http://dx.doi.org/10.3390/mca24030070.
Pełny tekst źródłaFRAGUELA, BASILIO B., RAMÓN DOALLO, and EMILIO L. ZAPATA. "MEMORY HIERARCHY PERFORMANCE PREDICTION FOR BLOCKED SPARSE ALGORITHMS." Parallel Processing Letters 09, no. 03 (1999): 347–60. http://dx.doi.org/10.1142/s0129626499000323.
Pełny tekst źródłaSmith, Barry F., and William D. Gropp. "The Design of Data-Structure-Neutral Libraries for the Iterative Solution of Sparse Linear Systems." Scientific Programming 5, no. 4 (1996): 329–36. http://dx.doi.org/10.1155/1996/417629.
Pełny tekst źródłaGuo, Dahai, and William Gropp. "Applications of the streamed storage format for sparse matrix operations." International Journal of High Performance Computing Applications 28, no. 1 (2013): 3–12. http://dx.doi.org/10.1177/1094342012470469.
Pełny tekst źródłaAkhunov, R. R., S. P. Kuksenko, V. K. Salov, and T. R. Gazizov. "Sparse matrix storage formats and acceleration of iterative solution of linear algebraic systems with dense matrices." Journal of Mathematical Sciences 191, no. 1 (2013): 10–18. http://dx.doi.org/10.1007/s10958-013-1296-7.
Pełny tekst źródłaMerrill, Duane, and Michael Garland. "Merge-based sparse matrix-vector multiplication (SpMV) using the CSR storage format." ACM SIGPLAN Notices 51, no. 8 (2016): 1–2. http://dx.doi.org/10.1145/3016078.2851190.
Pełny tekst źródłaZhang, Jilin, Jian Wan, Fangfang Li, et al. "Efficient sparse matrix–vector multiplication using cache oblivious extension quadtree storage format." Future Generation Computer Systems 54 (January 2016): 490–500. http://dx.doi.org/10.1016/j.future.2015.03.005.
Pełny tekst źródłaSmith, Barry, and Hong Zhang. "Sparse triangular solves for ILU revisited: data layout crucial to better performance." International Journal of High Performance Computing Applications 25, no. 4 (2010): 386–91. http://dx.doi.org/10.1177/1094342010389857.
Pełny tekst źródłaJi, Guo Liang, Yang De Feng, Wen Kai Cui, and Liang Gang Lu. "Implementation Procedures of Parallel Preconditioning with Sparse Matrix Based on FEM." Applied Mechanics and Materials 166-169 (May 2012): 3166–73. http://dx.doi.org/10.4028/www.scientific.net/amm.166-169.3166.
Pełny tekst źródłaOganesyan, P. A., and O. O. Shtein. "Implementation of Basic Operations for Sparse Matrices when Solving a Generalized Eigenvalue Problem in the ACELAN-COMPOS Complex." Advanced Engineering Research 23, no. 2 (2023): 121–29. http://dx.doi.org/10.23947/2687-1653-2023-23-2-121-129.
Pełny tekst źródłaBramas, Bérenger, and Pavel Kus. "Computing the sparse matrix vector product using block-based kernels without zero padding on processors with AVX-512 instructions." PeerJ Computer Science 4 (April 30, 2018): e151. http://dx.doi.org/10.7717/peerj-cs.151.
Pełny tekst źródłaMahmoud, Mohammed, Mark Hoffmann, and Hassan Reza. "Developing a New Storage Format and a Warp-Based SpMV Kernel for Configuration Interaction Sparse Matrices on the GPU." Computation 6, no. 3 (2018): 45. http://dx.doi.org/10.3390/computation6030045.
Pełny tekst źródłaMohammed, Saira Banu Jamal, M. Rajasekhara Babu, and Sumithra Sriram. "GPU Implementation of Image Convolution Using Sparse Model with Efficient Storage Format." International Journal of Grid and High Performance Computing 10, no. 1 (2018): 54–70. http://dx.doi.org/10.4018/ijghpc.2018010104.
Pełny tekst źródłaZhang, Jianfei, and Lei Zhang. "Efficient CUDA Polynomial Preconditioned Conjugate Gradient Solver for Finite Element Computation of Elasticity Problems." Mathematical Problems in Engineering 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/398438.
Pełny tekst źródłaLi, Yishui, Peizhen Xie, Xinhai Chen, et al. "VBSF: a new storage format for SIMD sparse matrix–vector multiplication on modern processors." Journal of Supercomputing 76, no. 3 (2019): 2063–81. http://dx.doi.org/10.1007/s11227-019-02835-4.
Pełny tekst źródłaBoo, Hee-Hyung, and Sung-Ho Kim. "Two dimensional variable-length vector storage format for efficient storage of sparse matrix in the finite element method." Journal of the Korea Society of Computer and Information 17, no. 9 (2012): 9–16. http://dx.doi.org/10.9708/jksci/2012.17.9.009.
Pełny tekst źródłaAlAhmadi, Sarah, Thaha Mohammed, Aiiad Albeshri, Iyad Katib, and Rashid Mehmood. "Performance Analysis of Sparse Matrix-Vector Multiplication (SpMV) on Graphics Processing Units (GPUs)." Electronics 9, no. 10 (2020): 1675. http://dx.doi.org/10.3390/electronics9101675.
Pełny tekst źródłaAhmed, Muhammad, Sardar Usman, Nehad Ali Shah, et al. "AAQAL: A Machine Learning-Based Tool for Performance Optimization of Parallel SPMV Computations Using Block CSR." Applied Sciences 12, no. 14 (2022): 7073. http://dx.doi.org/10.3390/app12147073.
Pełny tekst źródłaMoussaoui, Mohammed Lamine, Abderrahmane Kibboua, and Mohamed Chabaat. "Contribution to Bridge Damage Analysis." Applied Mechanics and Materials 704 (December 2014): 435–41. http://dx.doi.org/10.4028/www.scientific.net/amm.704.435.
Pełny tekst źródłaZeng, Guangsen, and Yi Zou. "Leveraging Memory Copy Overlap for Efficient Sparse Matrix-Vector Multiplication on GPUs." Electronics 12, no. 17 (2023): 3687. http://dx.doi.org/10.3390/electronics12173687.
Pełny tekst źródłaGao, Jiaquan, Yuanshen Zhou, and Kesong Wu. "A Novel Multi-GPU Parallel Optimization Model for The Sparse Matrix-Vector Multiplication." Parallel Processing Letters 26, no. 04 (2016): 1640001. http://dx.doi.org/10.1142/s0129626416400016.
Pełny tekst źródłaHuang, Lan, Jia Zeng, Shiqi Sun, Wencong Wang, Yan Wang, and Kangping Wang. "Coarse-Grained Pruning of Neural Network Models Based on Blocky Sparse Structure." Entropy 23, no. 8 (2021): 1042. http://dx.doi.org/10.3390/e23081042.
Pełny tekst źródłaLiu, Guangwei, Zhen Hao, Zheng Niu, Ka Mu, Jixian Ma, and Wenzhe Zhang. "Lossless Compression and Optimization Method of Data Flow Efficiency of Infrared Image Depth Learning Model of Substation Equipment." Journal of Physics: Conference Series 2320, no. 1 (2022): 012026. http://dx.doi.org/10.1088/1742-6596/2320/1/012026.
Pełny tekst źródłaZhang, Yi, Zebin Wu, Jin Sun, et al. "A Distributed Parallel Algorithm Based on Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images." Sensors 18, no. 11 (2018): 3627. http://dx.doi.org/10.3390/s18113627.
Pełny tekst źródłaBenatia, Akrem, Weixing Ji, Yizhuo Wang, and Feng Shi. "Sparse matrix partitioning for optimizing SpMV on CPU-GPU heterogeneous platforms." International Journal of High Performance Computing Applications 34, no. 1 (2019): 66–80. http://dx.doi.org/10.1177/1094342019886628.
Pełny tekst źródłaLangr, Daniel, and Ivan Šimeček. "Analysis of Memory Footprints of Sparse Matrices Partitioned Into Uniformly-Sized Blocks." Scalable Computing: Practice and Experience 19, no. 3 (2018): 275–92. http://dx.doi.org/10.12694/scpe.v19i3.1358.
Pełny tekst źródła., V. Kabeer. "SPARSE MATRIX STORAGE USING DECIMAL CODING." International Journal of Research in Engineering and Technology 05, no. 34 (2016): 12–15. http://dx.doi.org/10.15623/ijret.2016.0534003.
Pełny tekst źródłaBani-Ismail, Basel, and Ghassan Kanaan. "Comparing Different Sparse Matrix Storage Structures as Index Structure for Arabic Text Collection." International Journal of Information Retrieval Research 2, no. 2 (2012): 52–67. http://dx.doi.org/10.4018/ijirr.2012040105.
Pełny tekst źródłaWang, Ying, and Korhan Cengiz. "Implementation of the Spark technique in a matrix distributed computing algorithm." Journal of Intelligent Systems 31, no. 1 (2022): 660–71. http://dx.doi.org/10.1515/jisys-2022-0051.
Pełny tekst źródłaEt.al, Sudha Hanumanthu. "Universal Measurement Matrix Design for Sparse and Co-Sparse Signal Recovery." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 6 (2021): 404–11. http://dx.doi.org/10.17762/turcomat.v12i6.1407.
Pełny tekst źródłaGrasedyck, Lars, and Wolfgang Hackbusch. "An Introduction to Hierarchical (H-) Rank and TT-Rank of Tensors with Examples." Computational Methods in Applied Mathematics 11, no. 3 (2011): 291–304. http://dx.doi.org/10.2478/cmam-2011-0016.
Pełny tekst źródłaSong, Qi, Pu Chen, and Shuli Sun. "Partial Refactorization in Sparse Matrix Solution: A New Possibility for Faster Nonlinear Finite Element Analysis." Mathematical Problems in Engineering 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/403912.
Pełny tekst źródłaLiu, Sheng, Yasong Cao, and Shuwei Sun. "Mapping and Optimization Method of SpMV on Multi-DSP Accelerator." Electronics 11, no. 22 (2022): 3699. http://dx.doi.org/10.3390/electronics11223699.
Pełny tekst źródłaMukaddes, Abul Mukid Mohammad, Masao Ogino, Ryuji Shioya, and Hiroshi Kanayama. "Treatment of Block-Based Sparse Matrices in Domain Decomposition Method." International Journal of System Modeling and Simulation 2, no. 1 (2017): 1. http://dx.doi.org/10.24178/ijsms.2017.2.1.01.
Pełny tekst źródłaZhou, Huilin, Youwen Liu, Yuhao Wang, Liangbing Chen, and Rongxing Duan. "Nonlinear Electromagnetic Inverse Scattering Imaging Based on IN-LSQR." International Journal of Antennas and Propagation 2018 (August 2, 2018): 1–9. http://dx.doi.org/10.1155/2018/2794646.
Pełny tekst źródłaZhang, Xu Dong, Jian Ye Yuan, Jing Ping Zhang, and Jian Ying Feng. "Two-Port Characteristic Analysis for Transformers with the Large Scale Windings Based on Sparse Matrix." Advanced Materials Research 986-987 (July 2014): 2035–38. http://dx.doi.org/10.4028/www.scientific.net/amr.986-987.2035.
Pełny tekst źródłaCUI, Hang, Shoichi HIRASAWA, Hiroaki KOBAYASHI, and Hiroyuki TAKIZAWA. "A Machine Learning-Based Approach for Selecting SpMV Kernels and Matrix Storage Formats." IEICE Transactions on Information and Systems E101.D, no. 9 (2018): 2307–14. http://dx.doi.org/10.1587/transinf.2017edp7176.
Pełny tekst źródłaTang, Wai Teng, Wen Jun Tan, Rick Siow Mong Goh, Stephen John Turner, and Weng-Fai Wong. "A Family of Bit-Representation-Optimized Formats for Fast Sparse Matrix-Vector Multiplication on the GPU." IEEE Transactions on Parallel and Distributed Systems 26, no. 9 (2015): 2373–85. http://dx.doi.org/10.1109/tpds.2014.2357437.
Pełny tekst źródłaWang, Pei, Xu Sheng Yang, Zhuo Yuan Wang, Lin Gong Li, Ji Chang He, and Qing Jie Wang. "Solving Large-Scale Asymmetric Sparse Linear Equations Based on SuperLU Algorithm." Advanced Materials Research 230-232 (May 2011): 1355–61. http://dx.doi.org/10.4028/www.scientific.net/amr.230-232.1355.
Pełny tekst źródłaLu, Xinmiao, Cunfang Yang, Qiong Wu, et al. "Improved Reconstruction Algorithm of Wireless Sensor Network Based on BFGS Quasi-Newton Method." Electronics 12, no. 6 (2023): 1267. http://dx.doi.org/10.3390/electronics12061267.
Pełny tekst źródłaStevanović, Dragoljub, Marko Topalović, and Miroslav Živković. "IMPROVEMENT OF THE SPARSE MATRICES STORAGE ROUTINES FOR LARGE FEM CALCULATIONS." Journal of the Serbian Society for Computational Mechanics 15, no. 1 (2021): 81–97. http://dx.doi.org/10.24874/jsscm.2021.15.01.06.
Pełny tekst źródłaYuhendri, Muldi, Ahyanuardi Ahyanuardi, and Aswardi Aswardi. "Direct Torque Control Strategy of PMSM Employing Ultra Sparse Matrix Converter." International Journal of Power Electronics and Drive Systems (IJPEDS) 9, no. 1 (2018): 64. http://dx.doi.org/10.11591/ijpeds.v9.i1.pp64-72.
Pełny tekst źródłaMukaddes, A. M. M., Masao Ogino, and Ryuji Shioya. "403 A Computational Study of Sparse Matrix Storage Schemes in the Domain Decomposition Method." Proceedings of The Computational Mechanics Conference 2012.25 (2012): 95–96. http://dx.doi.org/10.1299/jsmecmd.2012.25.95.
Pełny tekst źródłaFernandes, P., and P. Girdinio. "A new storage scheme for an efficient implementation of the sparse matrix-vector product." Parallel Computing 12, no. 3 (1989): 327–33. http://dx.doi.org/10.1016/0167-8191(89)90090-2.
Pełny tekst źródłaKoslowski, T., and W. Von Niessen. "Linear combination of Lanczos vectors: A storage-efficient algorithm for sparse matrix eigenvector computations." Journal of Computational Chemistry 14, no. 7 (1993): 769–74. http://dx.doi.org/10.1002/jcc.540140703.
Pełny tekst źródłaVasco, Don W., John E. Peterson, and Ernest L. Majer. "Resolving seismic anisotropy: Sparse matrix methods for geophysical inverse problems." GEOPHYSICS 63, no. 3 (1998): 970–83. http://dx.doi.org/10.1190/1.1444408.
Pełny tekst źródłaKai, Hong. "Application of Internet of Things Audio Technology Based on Parallel Storage System in Music Classroom." Advances in Multimedia 2022 (September 14, 2022): 1–12. http://dx.doi.org/10.1155/2022/5883238.
Pełny tekst źródła