Artykuły w czasopismach na temat „Stochastic sampling algorithms”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Stochastic sampling algorithms”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Mohamed, Linah, Mike Christie, and Vasily Demyanov. "Comparison of Stochastic Sampling Algorithms for Uncertainty Quantification." SPE Journal 15, no. 01 (2009): 31–38. http://dx.doi.org/10.2118/119139-pa.
Pełny tekst źródłaDevir, Zvi, and Michael Lindenbaum. "Adaptive Range Sampling Using a Stochastic Model." Journal of Computing and Information Science in Engineering 7, no. 1 (2006): 20–25. http://dx.doi.org/10.1115/1.2432899.
Pełny tekst źródłaChowdhury and, Anirban Narayan, and Rolando D. Somma. "Quantum algorithms for Gibbs sampling and hitting-time estimation." Quantum Information and Computation 17, no. 1&2 (2017): 41–64. http://dx.doi.org/10.26421/qic17.1-2-3.
Pełny tekst źródłaPrellberg, Thomas. "Rare event sampling with stochastic growth algorithms." EPJ Web of Conferences 44 (2013): 01001. http://dx.doi.org/10.1051/epjconf/20134401001.
Pełny tekst źródłaMooasvi, Azam, and Adrian Sandu. "APPROXIMATE EXPONENTIAL ALGORITHMS TO SOLVE THE CHEMICAL MASTER EQUATION." Mathematical Modelling and Analysis 20, no. 3 (2015): 382–95. http://dx.doi.org/10.3846/13926292.2015.1048760.
Pełny tekst źródłaSwamy, Chaitanya, and David B. Shmoys. "Sampling-Based Approximation Algorithms for Multistage Stochastic Optimization." SIAM Journal on Computing 41, no. 4 (2012): 975–1004. http://dx.doi.org/10.1137/100789269.
Pełny tekst źródłaStoltz, Gabriel. "Path sampling with stochastic dynamics: Some new algorithms." Journal of Computational Physics 225, no. 1 (2007): 491–508. http://dx.doi.org/10.1016/j.jcp.2006.12.006.
Pełny tekst źródłaVatter, Thibault. "Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications." Journal of the American Statistical Association 115, no. 529 (2020): 481–82. http://dx.doi.org/10.1080/01621459.2020.1721244.
Pełny tekst źródłaDempster, M. A. H. "Sequential Importance Sampling Algorithms for Dynamic Stochastic Programming." Journal of Mathematical Sciences 133, no. 4 (2006): 1422–44. http://dx.doi.org/10.1007/s10958-006-0058-1.
Pełny tekst źródłaRezvanian, Alireza, and Mohammad Reza Meybodi. "Sampling algorithms for stochastic graphs: A learning automata approach." Knowledge-Based Systems 127 (July 2017): 126–44. http://dx.doi.org/10.1016/j.knosys.2017.04.012.
Pełny tekst źródłaYiou, Pascal, and Aglaé Jézéquel. "Simulation of extreme heat waves with empirical importance sampling." Geoscientific Model Development 13, no. 2 (2020): 763–81. http://dx.doi.org/10.5194/gmd-13-763-2020.
Pełny tekst źródłaQian, Guoqi, Calyampudi Radhakrishna Rao, Xiaoying Sun, and Yuehua Wu. "Boosting association rule mining in large datasets via Gibbs sampling." Proceedings of the National Academy of Sciences 113, no. 18 (2016): 4958–63. http://dx.doi.org/10.1073/pnas.1604553113.
Pełny tekst źródłaCarius, Jan, René Ranftl, Farbod Farshidian, and Marco Hutter. "Constrained stochastic optimal control with learned importance sampling: A path integral approach." International Journal of Robotics Research 41, no. 2 (2021): 189–209. http://dx.doi.org/10.1177/02783649211047890.
Pełny tekst źródłaStaudacher, Jochen, and Tim Pollmann. "Assessing Antithetic Sampling for Approximating Shapley, Banzhaf, and Owen Values." AppliedMath 3, no. 4 (2023): 957–88. http://dx.doi.org/10.3390/appliedmath3040049.
Pełny tekst źródłaFill, James Allen. "The Move-to-Front Rule: A Case Study for two Perfect Sampling Algorithms." Probability in the Engineering and Informational Sciences 12, no. 3 (1998): 283–302. http://dx.doi.org/10.1017/s0269964800005192.
Pełny tekst źródłaBaker, James E. "Providing Accurate yet Maximally Consistent Stochastic Sampling for Genetic Algorithms." Intelligent Automation & Soft Computing 5, no. 1 (1999): 43–56. http://dx.doi.org/10.1080/10798587.1999.10750750.
Pełny tekst źródłaGupta, Anupam, Martin Pál, R. Ravi, and Amitabh Sinha. "Sampling and Cost-Sharing: Approximation Algorithms for Stochastic Optimization Problems." SIAM Journal on Computing 40, no. 5 (2011): 1361–401. http://dx.doi.org/10.1137/080732250.
Pełny tekst źródłaShao, Litian. "Utilizing Multi-Armed Bandit Algorithms for Advertising: An In-Depth Case Study on an Online Retail Platform's Advertising Campaign." Highlights in Science, Engineering and Technology 94 (April 26, 2024): 217–23. http://dx.doi.org/10.54097/1gv35d75.
Pełny tekst źródłaFouad, Ahmed M., Mohamed Saleh, and Amir F. Atiya. "A Novel Quota Sampling Algorithm for Generating Representative Random Samples given Small Sample Size." International Journal of System Dynamics Applications 2, no. 1 (2013): 97–113. http://dx.doi.org/10.4018/ijsda.2013010105.
Pełny tekst źródłaKiss, Oriel, Michele Grossi, and Alessandro Roggero. "Importance sampling for stochastic quantum simulations." Quantum 7 (April 13, 2023): 977. http://dx.doi.org/10.22331/q-2023-04-13-977.
Pełny tekst źródłaAKBARI TORKESTANI, JAVAD, and MOHAMMAD REZA MEYBODI. "LEARNING AUTOMATA-BASED ALGORITHMS FOR FINDING MINIMUM WEAKLY CONNECTED DOMINATING SET IN STOCHASTIC GRAPHS." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 18, no. 06 (2010): 721–58. http://dx.doi.org/10.1142/s0218488510006775.
Pełny tekst źródłaCheng, J., and M. J. Druzdzel. "AIS-BN: An Adaptive Importance Sampling Algorithm for Evidential Reasoning in Large Bayesian Networks." Journal of Artificial Intelligence Research 13 (October 1, 2000): 155–88. http://dx.doi.org/10.1613/jair.764.
Pełny tekst źródłaHedar, Abdel-Rahman, Amira A. Allam, and Alaa Fahim. "Estimation of Distribution Algorithms with Fuzzy Sampling for Stochastic Programming Problems." Applied Sciences 10, no. 19 (2020): 6937. http://dx.doi.org/10.3390/app10196937.
Pełny tekst źródłaPoli, Riccardo. "Dynamics and Stability of the Sampling Distribution of Particle Swarm Optimisers via Moment Analysis." Journal of Artificial Evolution and Applications 2008 (March 30, 2008): 1–10. http://dx.doi.org/10.1155/2008/761459.
Pełny tekst źródłaFranzese, Giulio, Dimitrios Milios, Maurizio Filippone, and Pietro Michiardi. "A Scalable Bayesian Sampling Method Based on Stochastic Gradient Descent Isotropization." Entropy 23, no. 11 (2021): 1426. http://dx.doi.org/10.3390/e23111426.
Pełny tekst źródłaOu, Mingdong, Nan Li, Cheng Yang, Shenghuo Zhu, and Rong Jin. "Semi-Parametric Sampling for Stochastic Bandits with Many Arms." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 7933–40. http://dx.doi.org/10.1609/aaai.v33i01.33017933.
Pełny tekst źródłaBalu, Radhakrishnan, Dale Shires, and Raju Namburu. "A quantum algorithm for uniform sampling of models of propositional logic based on quantum probability." Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 16, no. 1 (2016): 57–65. http://dx.doi.org/10.1177/1548512916648232.
Pełny tekst źródłaMorton, David P. "Stopping Rules for a Class of Sampling-Based Stochastic Programming Algorithms." Operations Research 46, no. 5 (1998): 710–18. http://dx.doi.org/10.1287/opre.46.5.710.
Pełny tekst źródłaDoucet, A., A. Logothetis, and V. Krishnamurthy. "Stochastic sampling algorithms for state estimation of jump Markov linear systems." IEEE Transactions on Automatic Control 45, no. 2 (2000): 188–202. http://dx.doi.org/10.1109/9.839943.
Pełny tekst źródłaPhilpott, A. B., and V. L. de Matos. "Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion." European Journal of Operational Research 218, no. 2 (2012): 470–83. http://dx.doi.org/10.1016/j.ejor.2011.10.056.
Pełny tekst źródłaLu, Jianguang, Juan Tang, Bin Xing, and Xianghong Tang. "Stochastic Approximate Algorithms for Uncertain Constrained K-Means Problem." Mathematics 10, no. 1 (2022): 144. http://dx.doi.org/10.3390/math10010144.
Pełny tekst źródłaTodorov, Venelin, Valerij Dzhurov, and Ilian Tzvetkov. "A COMPARISON OF SEVERAL STOCHASTIC TECHNIQUES FOR COMPUTATION OF MULTIDIMENSIONAL INTEGRALS." Journal Scientific and Applied Research 20, no. 1 (2020): 11–18. http://dx.doi.org/10.46687/jsar.v20i1.299.
Pełny tekst źródłaAn, Dong, Noah Linden, Jin-Peng Liu, Ashley Montanaro, Changpeng Shao, and Jiasu Wang. "Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance." Quantum 5 (June 24, 2021): 481. http://dx.doi.org/10.22331/q-2021-06-24-481.
Pełny tekst źródłaTrovo, Francesco, Stefano Paladino, Marcello Restelli, and Nicola Gatti. "Sliding-Window Thompson Sampling for Non-Stationary Settings." Journal of Artificial Intelligence Research 68 (May 26, 2020): 311–64. http://dx.doi.org/10.1613/jair.1.11407.
Pełny tekst źródłaTodorov, Venelin. "MONTE CARLO SAMPLING TECHNIQUES FOR COMPUTATION OF MULTIDIMENSIONAL INTEGRALS RELATED TO MIGRATION." Journal Scientific and Applied Research 16, no. 1 (2019): 23–31. http://dx.doi.org/10.46687/jsar.v16i1.260.
Pełny tekst źródłaSchell, Thomas, та Stefan Wegenkittl. "Looking Beyond Selection Probabilities: Adaptation of the χ2 Measure for the Performance Analysis of Selection Methods in GAs". Evolutionary Computation 9, № 2 (2001): 243–56. http://dx.doi.org/10.1162/106365601750190424.
Pełny tekst źródłaHe, Yandong, Zhong Zheng, Huilin Li, and Jie Deng. "A Stochastic Drone-Scheduling Problem with Uncertain Energy Consumption." Drones 8, no. 9 (2024): 430. http://dx.doi.org/10.3390/drones8090430.
Pełny tekst źródłaWang, Peng, Ge Li, Yong Peng, and Rusheng Ju. "Random Finite Set Based Parameter Estimation Algorithm for Identifying Stochastic Systems." Entropy 20, no. 8 (2018): 569. http://dx.doi.org/10.3390/e20080569.
Pełny tekst źródłaLinowsky, K., and A. B. Philpott. "On the Convergence of Sampling-Based Decomposition Algorithms for Multistage Stochastic Programs." Journal of Optimization Theory and Applications 125, no. 2 (2005): 349–66. http://dx.doi.org/10.1007/s10957-004-1842-z.
Pełny tekst źródłaZhang, Yuzhen, Jun Ma, Shunlin Liang, Xisheng Li, and Manyao Li. "An Evaluation of Eight Machine Learning Regression Algorithms for Forest Aboveground Biomass Estimation from Multiple Satellite Data Products." Remote Sensing 12, no. 24 (2020): 4015. http://dx.doi.org/10.3390/rs12244015.
Pełny tekst źródłaLiu, Yizhi. "An investigation of progress related to stochastic stationary bandit algorithms." Applied and Computational Engineering 34, no. 1 (2024): 197–201. http://dx.doi.org/10.54254/2755-2721/34/20230326.
Pełny tekst źródłaZhang, Yanhui, and Wenyu Yang. "A comparative study of the stochastic simulation methods applied in structural health monitoring." Engineering Computations 31, no. 7 (2014): 1484–513. http://dx.doi.org/10.1108/ec-07-2013-0185.
Pełny tekst źródłaWang, Ming, Shou Jun Bai, and Huan Bao Wang. "A Novel Stochastic Localization Algorithm for Sensor Nodes in Wireless Sensor Networks." Applied Mechanics and Materials 39 (November 2010): 510–16. http://dx.doi.org/10.4028/www.scientific.net/amm.39.510.
Pełny tekst źródłaLim, Ming Chong, and Han-Lim Choi. "Improving Computational Efficiency in Crowded Task Allocation Games with Coupled Constraints." Applied Sciences 9, no. 10 (2019): 2117. http://dx.doi.org/10.3390/app9102117.
Pełny tekst źródłaZhou, Jin. "Application and comparative analysis of adaptive strategies in multi-armed bandit algorithms." Applied and Computational Engineering 64, no. 1 (2024): 237–48. http://dx.doi.org/10.54254/2755-2721/64/20241354.
Pełny tekst źródłaTrainor-Guitton, Whitney, and G. Michael Hoversten. "Stochastic inversion for electromagnetic geophysics: Practical challenges and improving convergence efficiency." GEOPHYSICS 76, no. 6 (2011): F373—F386. http://dx.doi.org/10.1190/geo2010-0223.1.
Pełny tekst źródłaCameron, Scott, Hans Eggers, and Steve Kroon. "A Sequential Marginal Likelihood Approximation Using Stochastic Gradients." Proceedings 33, no. 1 (2019): 18. http://dx.doi.org/10.3390/proceedings2019033018.
Pełny tekst źródłaYang, Feng, Yujuan Luo, and Litao Zheng. "Double-Layer Cubature Kalman Filter for Nonlinear Estimation." Sensors 19, no. 5 (2019): 986. http://dx.doi.org/10.3390/s19050986.
Pełny tekst źródłaBEIGY, HAMID, and M. R. MEYBODI. "UTILIZING DISTRIBUTED LEARNING AUTOMATA TO SOLVE STOCHASTIC SHORTEST PATH PROBLEMS." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 14, no. 05 (2006): 591–615. http://dx.doi.org/10.1142/s0218488506004217.
Pełny tekst źródłaJose, Sharu Theresa, and Shana Moothedath. "Thompson Sampling for Stochastic Bandits with Noisy Contexts: An Information-Theoretic Regret Analysis." Entropy 26, no. 7 (2024): 606. http://dx.doi.org/10.3390/e26070606.
Pełny tekst źródła