Gotowa bibliografia na temat „Structures”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Structures”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Structures"
Yamasaki, Satoshi, i Kazuhiko Fukui. "2P266 Tertiary structure prediction of RNA-RNA complex structures using secondary structure information(22A. Bioinformatics: Structural genomics,Poster)". Seibutsu Butsuri 53, supplement1-2 (2013): S203. http://dx.doi.org/10.2142/biophys.53.s203_1.
Pełny tekst źródłaJanoschek, Rudolf. "Structures, Structures, and Structures". Angewandte Chemie International Edition in English 31, nr 3 (marzec 1992): 290–92. http://dx.doi.org/10.1002/anie.199202901.
Pełny tekst źródłaSmith, Henry E. "Structured Settlements as Structures of Rights". Virginia Law Review 88, nr 8 (grudzień 2002): 1953. http://dx.doi.org/10.2307/1074013.
Pełny tekst źródłaHORNUNG, Martin, Takahisa DOBA, Rajat AGARWAL, Mark BUTLER i Olaf LAMMERSCHOP. "Structural Adhesives for Energy Management and Reinforcement of Body Structures". Journal of The Adhesion Society of Japan 44, nr 7 (2008): 258–63. http://dx.doi.org/10.11618/adhesion.44.258.
Pełny tekst źródłaIbrahim, M. K. "Radix-2nmultiplier structures: a structured design methodology". IEE Proceedings E (Computers and Digital Techniques) 140, nr 4 (lipiec 1993): 185–90. http://dx.doi.org/10.1049/ip-e.1993.0026.
Pełny tekst źródłaElyiğit, Belkıs, i Cevdet Emin Ekinci. "A RESEARCH ON STRUCTURAL AND NON-STRUCTURAL DAMAGES AND DAMAGE ASSESSMENT IN REINFORCED CONCRETE STRUCTURES". NWSA Academic Journals 18, nr 2 (25.04.2023): 19–42. http://dx.doi.org/10.12739/nwsa.2023.18.2.1a0485.
Pełny tekst źródłaKhalaf, Mohammed M., i Ahmed Elmoasry. " -WEAK STRUCTURES". Indian Journal of Applied Research 4, nr 1 (1.10.2011): 351–55. http://dx.doi.org/10.15373/2249555x/jan2014/103.
Pełny tekst źródłaZilberman, M., N. D. Schwade, R. S. Meidell i R. C. Eberhart. "Structured drug-loaded bioresorbable films for support structures". Journal of Biomaterials Science, Polymer Edition 12, nr 8 (styczeń 2001): 875–92. http://dx.doi.org/10.1163/156856201753113079.
Pełny tekst źródłaKraus, Felix, Ezequiel Miron, Justin Demmerle, Tsotne Chitiashvili, Alexei Budco, Quentin Alle, Atsushi Matsuda, Heinrich Leonhardt, Lothar Schermelleh i Yolanda Markaki. "Quantitative 3D structured illumination microscopy of nuclear structures". Nature Protocols 12, nr 5 (13.04.2017): 1011–28. http://dx.doi.org/10.1038/nprot.2017.020.
Pełny tekst źródłaJie Chen, M. K. H. Fan i C. N. Nett. "Structured singular values with nondiagonal structures. I. Characterizations". IEEE Transactions on Automatic Control 41, nr 10 (1996): 1507–11. http://dx.doi.org/10.1109/9.539434.
Pełny tekst źródłaRozprawy doktorskie na temat "Structures"
Guy, Nicolas. "Modèle et commande structurés : application aux grandes structures spatiales flexibles". Thesis, Toulouse, ISAE, 2013. http://www.theses.fr/2013ESAE0036/document.
Pełny tekst źródłaIn this thesis, modeling and robust attitude control problems of large flexible space structures are considered. To meet the required pointing performance of future space missions scenarios, we propose to directly optimize a reduced order control law on high order model validation and criteria that directly exploit the model structure. Thus, the work of this thesis is naturally divided into two parts : one part on obtaining a wisely structured dynamic model of the spacecraft to be used in the synthesis step, a second part about getting the law control. This work is illustrated on the example of the academic spring-masses system, which is the simplest representation of a one degree of freedom flexible system. In addition, a geostationary satellite study case is processed to validate developed approaches on a more realistic example of an industrial problem
Sibai, Munira. "Optimization of an Unfurlable Space Structure". Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99908.
Pełny tekst źródłaMaster of Science
Spacecraft, or artificial satellites, do not fly from earth to space on their own. They are launched into their orbits by placing them inside launch vehicles, also known as carrier rockets. Some parts or components of spacecraft are large and cannot fit in their designated space inside launch vehicles without being stowed into smaller volumes first. Examples of large components on spacecraft include solar arrays, which provide power to the spacecraft, and antennas, which are used on satellite for communication purposes. Many methods have been developed to stow such large components. Many of these methods involve folding about joints or hinges, whether it is done in a simple manner or by more complex designs. Moreover, components that are flexible enough could be rolled or wrapped before they are placed in launch vehicles. This method reduces the mass which the launch vehicle needs to carry, since added mass of joints is eliminated. Low mass is always desirable in space applications. Furthermore, wrapping is very effective at minimizing the volume of a component. These structures store energy inside them as they are wrapped due to the stiffness of their materials. This behavior is identical to that observed in a deformed spring. When the structures are released in space, that energy is released, and thus, they deploy and try to return to their original form. This is due to inertia, where the stored strain energy turns into kinetic energy as the structure deploys. The physical analysis of these structures, which enables their design, is complex and requires computational solutions and numerical modeling. The best design for a given problem can be found through numerical optimization. Numerical optimization uses mathematical approximations and computer programming to give the values of design parameters that would result in the best design based on specified criterion and goals. In this thesis, numerical optimization was conducted for a simple unfurlable structure. The structure consists of a thin rectangular panel that wraps tightly around a central cylinder. The cylinder and panel are connected with a hinge that is a rotational spring with some stiffness. The optimization was solved to obtain the best values for the stiffness of the hinge, the thickness of the panel, which is allowed to vary along its length, and the stiffness or elasticity of the panel's material. The goals or objective of the optimization was to ensure that the deployed panel meets stiffness requirement specified for similar space components. Those requirements are set to make certain that the spacecraft can be controlled from earth even with its large component deployed. Additionally, the second goal of the optimization was to guarantee that the unfurling panel does not have very high energy stored while it's wrapped, so that it would not cause large motion the connected spacecraft in the zero gravity environments of space. A computer simulation was run with the resulting hinge stiffness and panel elasticity and thickness values with the cylinder and four panels connected to a structure representing a spacecraft. The simulation results and deployment animation were assessed to confirm that desired results were achieved.
Keyhani, Ali. "A Study On The Predictive Optimal Active Control Of Civil Engineering Structures". Thesis, Indian Institute of Science, 2000. https://etd.iisc.ac.in/handle/2005/223.
Pełny tekst źródłaKeyhani, Ali. "A Study On The Predictive Optimal Active Control Of Civil Engineering Structures". Thesis, Indian Institute of Science, 2000. http://hdl.handle.net/2005/223.
Pełny tekst źródłaPeters, David W. "Design of diffractive optical elements through low-dimensional optimization". Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/54614.
Pełny tekst źródłaPlessas, Spyridon D. "Fluid-structure interaction in composite structures". Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/41432.
Pełny tekst źródłaIn this research, dynamic characteristics of polymer composite beam and plate structures were studied when the structures were in contact with water. The effect of fluid-structure interaction (FSI) on natural frequencies, mode shapes, and dynamic responses was examined for polymer composite structures using multiphysics-based computational techniques. Composite structures were modeled using the finite element method. The fluid was modeled as an acoustic medium using the cellular automata technique. Both techniques were coupled so that both fluid and structure could interact bi-directionally. In order to make the coupling easier, the beam and plate finite elements have only displacement degrees of freedom but no rotational degrees of freedom. The fast Fourier transform (FFT) technique was applied to the transient responses of the composite structures with and without FSI, respectively, so that the effect of FSI can be examined by comparing the two results. The study showed that the effect of FSI is significant on dynamic properties of polymer composite structures. Some previous experimental observations were confirmed using the results from the computer simulations, which also enhanced understanding the effect of FSI on dynamic responses of composite structures.
Carpentier, Mathilde. "Méthodes de détection des similarités structurales : caractérisation des motifs conservés dans les familles de structures pour l' annotation des génomes". Paris 6, 2005. http://www.theses.fr/2005PA066571.
Pełny tekst źródłaEdrees, Tarek. "Structural Identification of Civil Engineering Structures". Licentiate thesis, Luleå tekniska universitet, Byggkonstruktion och -produktion, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26719.
Pełny tekst źródłaGodkänd; 2014; 20141023 (taredr); Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Tarek Edrees Saaed Ämne: Konstruktionsteknik/Structural Engineering Uppsats: Structural Identification of Civil Engineering Structures Examinator: Professor Jan-Erik Jonasson, Institutionen för samhällsbyggnad och naturresurser, Luleå tekniska universitet Diskutant: Forskare Andreas Andersson, Brobyggnad inklusive Stålbyggnad, Kungliga Tekniska Högskolan Tid: Torsdag den 20 november 2014 kl 10:00 Plats: F1031, Luleå tekniska universitet
BABAEI, IMAN. "Structural Testing of Composite Crash Structures". Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2910072.
Pełny tekst źródłaRasmussen, Kim J. R. "Stability of thin-walled structural members and systems". Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/18194.
Pełny tekst źródłaKsiążki na temat "Structures"
Baerlocher, C., J. M. Bennett, W. Depmeier, A. N. Fitch, H. Jobic, H. van Koningsveld, W. M. Meier, A. Pfenninger i O. Terasaki, red. Structures and Structure Determination. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-69749-7.
Pełny tekst źródłaKwon, Young W. Fluid-Structure Interaction of Composite Structures. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57638-7.
Pełny tekst źródłaBui, Tinh Quoc, Le Thanh Cuong i Samir Khatir, red. Structural Health Monitoring and Engineering Structures. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0945-9.
Pełny tekst źródłaMoreira, Pedro M. G. P., Lucas F. M. da Silva i Paulo M. S. T. de Castro, red. Structural Connections for Lightweight Metallic Structures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-18187-0.
Pełny tekst źródłaChamis, C. C. Computational structural mechanics for engine structures. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Znajdź pełny tekst źródłaM, Silva Lucas F., Castro, Paulo M.S.T. i SpringerLink (Online service), red. Structural Connections for Lightweight Metallic Structures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Znajdź pełny tekst źródłaMoore, Fuller. Understanding structures = Introduction to structural systems. Taipei: McGraw Hill, 2000.
Znajdź pełny tekst źródłaInternational Association for Shell and Spatial Structures, red. Structural design of retractable roof structures. Southampton: WIT, 2000.
Znajdź pełny tekst źródłaOrganisation for Economic Co-operation and Development., red. Industrial structure statistics =: Statistiques des structures industrielles. Paris: O.E.C.D., 1987.
Znajdź pełny tekst źródłaSchodek, Daniel L. Structures. Wyd. 2. Englewood Cliffs, N.J: Prentice-Hall, 1991.
Znajdź pełny tekst źródłaCzęści książek na temat "Structures"
Kahle, Reinhard. "Structure and Structures". W Boston Studies in the Philosophy and History of Science, 109–20. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93342-9_7.
Pełny tekst źródłaHu, Hong-Song. "Peak Superstructure Responses of Single-Story Sliding Base Structures Under Earthquake Excitation". W Sliding Base Structures, 45–65. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5107-9_4.
Pełny tekst źródłaStimpfle, Bernd. "Structural Air — Pneumatic Structures". W Textile Composites and Inflatable Structures II, 233–52. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6856-0_13.
Pełny tekst źródłaWilliams, M. S., i J. D. Todd. "Introducing structures". W Structures, 1–30. London: Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_1.
Pełny tekst źródłaWilliams, M. S., i J. D. Todd. "The finite element method". W Structures, 286–314. London: Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_10.
Pełny tekst źródłaWilliams, M. S., i J. D. Todd. "Buckling and instability". W Structures, 315–43. London: Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_11.
Pełny tekst źródłaWilliams, M. S., i J. D. Todd. "Plastic analysis of structures". W Structures, 344–73. London: Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_12.
Pełny tekst źródłaWilliams, M. S., i J. D. Todd. "Structural dynamics". W Structures, 374–409. London: Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_13.
Pełny tekst źródłaWilliams, M. S., i J. D. Todd. "Plane statics". W Structures, 31–61. London: Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_2.
Pełny tekst źródłaWilliams, M. S., i J. D. Todd. "Statically determinate structures". W Structures, 62–96. London: Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Structures"
Downen, Paul, Philip Johnson-Freyd i Zena M. Ariola. "Structures for structural recursion". W ICFP'15: 20th ACM SIGPLAN International Conference on Functional Programming. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2784731.2784762.
Pełny tekst źródłaLee, Yong Kyu, Seong-Joon Yoo, Kyoungro Yoon i P. Bruce Berra. "Index structures for structured documents". W the first ACM international conference. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/226931.226950.
Pełny tekst źródłaWADA, BEN. "Adaptive structures". W 30th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1160.
Pełny tekst źródłaBruck, Hugh A. "Processing-Structure-Property Relationships in Hierarchically-Structured Polymer Composites for Multifunctional Structures". W ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59088.
Pełny tekst źródłaLeutenegger, Tobias, Dirk H. Schlums i Jurg Dual. "Structural testing of fatigued structures". W 1999 Symposium on Smart Structures and Materials, redaktor Norman M. Wereley. SPIE, 1999. http://dx.doi.org/10.1117/12.350775.
Pełny tekst źródłaWADA, BEN, i SENOL UTKU. "Adaptive structures for deployment/construction of structures in space". W 33rd Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-2339.
Pełny tekst źródłaTaron, Joshua. "Speculative Structures: Reanimating Latent Structural Intelligence in Agent-based Continuum Structures". W eCAADe 2012 : Digital Physicality. eCAADe, 2012. http://dx.doi.org/10.52842/conf.ecaade.2012.1.365.
Pełny tekst źródłaTaron, Joshua. "Speculative Structures: Reanimating Latent Structural Intelligence in Agent-based Continuum Structures". W eCAADe 2012 : Digital Physicality. eCAADe, 2012. http://dx.doi.org/10.52842/conf.ecaade.2012.1.365.
Pełny tekst źródłaNOOR, AHMED. "Computational structures technology". W 33rd Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-2442.
Pełny tekst źródła"Structure/Flow Interaction in Inflatable Structures". W 55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.iac-04-u.3.a.06.
Pełny tekst źródłaRaporty organizacyjne na temat "Structures"
Ebeling, Robert, i Barry White. Load and resistance factors for earth retaining, reinforced concrete hydraulic structures based on a reliability index (β) derived from the Probability of Unsatisfactory Performance (PUP) : phase 2 study. Engineer Research and Development Center (U.S.), marzec 2021. http://dx.doi.org/10.21079/11681/39881.
Pełny tekst źródłaWeinstein Agrawal, Asha, Samuel Speroni, Michael Manville i Brian D. Taylor. Pay-As-You-Go Driving: Examining Possible Road-User Charge Rate Structures for California. Mineta Transporation Institute, październik 2023. http://dx.doi.org/10.31979/mti.2023.2149.
Pełny tekst źródłaSullivan, Brian J., i Kent W. Buesking. Structural Integrity of Intelligent Materials and Structures. Fort Belvoir, VA: Defense Technical Information Center, luty 1994. http://dx.doi.org/10.21236/ada280941.
Pełny tekst źródłaFuller, Chris R. Active Structural Acoustic Control and Smart Structures. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1991. http://dx.doi.org/10.21236/ada248341.
Pełny tekst źródłaInman, Daniel J., Armaghan Salhian i Pablo Tarazaga. Structural Dynamics of Cable Harnessed Spacecraft Structures. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2013. http://dx.doi.org/10.21236/ada588127.
Pełny tekst źródłaFernandez, Jasmine, Michaela Bonnett, Teri Garstka i Meaghan Kennedy. Exploring Social Care Network Structures. Orange Sparkle Ball, czerwiec 2024. http://dx.doi.org/10.61152/hdnz4028https://www.orangesparkleball.com/innovation-library-blog/2024/5/30/sunbelt2024-exploring-social-care-network-structures.
Pełny tekst źródłaFernandez, Jasmine, Michaela Bonnett, Teri Garstka i Meaghan Kennedy. Exploring Social Care Network Structures. Orange Sparkle Ball, czerwiec 2024. http://dx.doi.org/10.61152/hdnz4028.
Pełny tekst źródłaIssa, Mohsen A. Structural Evaluation Procedures for Heavy Wood Truss Structures. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1998. http://dx.doi.org/10.21236/ada362404.
Pełny tekst źródłaAllen, J., i J. Lauffer. Integrated structural control design of large space structures. Office of Scientific and Technical Information (OSTI), styczeń 1995. http://dx.doi.org/10.2172/10115453.
Pełny tekst źródłaHadjipanayis, George, i Alexander Gabay. Electronic Structure and Spin Correlations in Novel Magnetic Structures. Office of Scientific and Technical Information (OSTI), czerwiec 2021. http://dx.doi.org/10.2172/1797990.
Pełny tekst źródła