Gotowa bibliografia na temat „Structures lattices”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Structures lattices”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Structures lattices"
Majari, Parisa, Daniel Olvera-Trejo, Jorge A. Estrada-Díaz, Alex Elías-Zúñiga, Oscar Martinez-Romero, Claudia A. Ramírez-Herrera i Imperio Anel Perales-Martínez. "Enhanced Lightweight Structures Through Brachistochrone-Inspired Lattice Design". Polymers 17, nr 5 (28.02.2025): 654. https://doi.org/10.3390/polym17050654.
Pełny tekst źródłaMaskery, Ian, Alexandra Hussey, Ajit Panesar, Adedeji Aremu, Christopher Tuck, Ian Ashcroft i Richard Hague. "An investigation into reinforced and functionally graded lattice structures". Journal of Cellular Plastics 53, nr 2 (28.07.2016): 151–65. http://dx.doi.org/10.1177/0021955x16639035.
Pełny tekst źródłaHorváth, Eszter K., Sándor Radeleczki, Branimir Šešelja i Andreja Tepavčević. "A Note on Cuts of Lattice-Valued Functions and Concept Lattices". Mathematica Slovaca 73, nr 3 (1.06.2023): 583–94. http://dx.doi.org/10.1515/ms-2023-0043.
Pełny tekst źródłaEl-Gayar, Mostafa A., i Radwan Abu-Gdairi. "Extension of topological structures using lattices and rough sets". AIMS Mathematics 9, nr 3 (2024): 7552–69. http://dx.doi.org/10.3934/math.2024366.
Pełny tekst źródłaShatabda, Swakkhar, M. A. Hakim Newton, Mahmood A. Rashid, Duc Nghia Pham i Abdul Sattar. "How Good Are Simplified Models for Protein Structure Prediction?" Advances in Bioinformatics 2014 (29.04.2014): 1–9. http://dx.doi.org/10.1155/2014/867179.
Pełny tekst źródłaGrabowski, Adam. "Stone Lattices". Formalized Mathematics 23, nr 4 (1.12.2015): 387–96. http://dx.doi.org/10.1515/forma-2015-0031.
Pełny tekst źródłaPan, Chen, Yafeng Han i Jiping Lu. "Design and Optimization of Lattice Structures: A Review". Applied Sciences 10, nr 18 (13.09.2020): 6374. http://dx.doi.org/10.3390/app10186374.
Pełny tekst źródłaLan, Tian, Chenxi Peng, Kate Fox, Truong Do i Phuong Tran. "Triply periodic minimal surfaces lattice structures: Functional graded and hybrid designs for engineering applications". Materials Science in Additive Manufacturing 2, nr 3 (27.09.2023): 1753. http://dx.doi.org/10.36922/msam.1753.
Pełny tekst źródłaLiu, Tinghao, i Guangbo Hao. "Design of Deployable Structures by Using Bistable Compliant Mechanisms". Micromachines 13, nr 5 (19.04.2022): 651. http://dx.doi.org/10.3390/mi13050651.
Pełny tekst źródłaFlaut, Cristina, Dana Piciu i Bianca Liana Bercea. "Some Applications of Fuzzy Sets in Residuated Lattices". Axioms 13, nr 4 (18.04.2024): 267. http://dx.doi.org/10.3390/axioms13040267.
Pełny tekst źródłaRozprawy doktorskie na temat "Structures lattices"
Galvin, Brian Russell. "Numerical studies of localized vibrating structures in nonlinear lattices". Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/28408.
Pełny tekst źródłaZhang, Botao. "Design of Variable-Density Structures for Additive Manufacturing Using Gyroid Lattices". University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535374427634743.
Pełny tekst źródłaBrown, Stephen A. "The response of polyhedra in close packed structures to temperature and pressure". Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-11102009-020124/.
Pełny tekst źródłaDamon, François. "Sonder des structures complexes avec des ondes de matière". Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30342/document.
Pełny tekst źródłaThis thesis presents the studies that I did at the Laboratoire de Physique Théorique. It concerns the interaction between matter waves and time and space depandant optical lattices. Using such lattices allows one to manipulate coherently the dynamical properties of ultra cold atoms. This theoretical study has been done in collaboration with the Cold Atoms group at the LCAR laboratory. The spatial variations of the lattice envelope locally create spatial gaps which create a Bragg cavity for matter waves. We have st udied in detail their properties and the cavity has been realized experimentally by using a Ru bid ium 85 Bose-Einstein condensate in a wave guide. We have also studied the propagation of an atomic cloud in a bichromatic optical lattice which allows us to make a quantum simulator of the Harper madel. The spectrum of the system Hamiltonian· posseses a fractal dimension which can be numerically characterized. We have also shawn that it is possible to use the repulsive interatomic interaction of a Bose-Einstein condensate in arder to amplify the momentum-position correlation during propagation in a guide. Our st udy shows that a mesure of local dynamical quantities of the atomic cloud enables one to experimentally probe resonances of an optical potential down to the picoKelvin scale. At last, an atomic cloud with attractive interactions admit a stable solution, the soliton. We have numerically demonstrated that this soliton can be used to probe bound states of a potential by populating those states through a scattering experiment, for example surface states
Reid, Robert. "Propagation and period-doubling of coherent structures in coupled lattice maps". Thesis, University of Warwick, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369417.
Pełny tekst źródłaLeo, James Lewis. "The transport properties of semiconductor super-lattices and multiple quantum well structures". Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47153.
Pełny tekst źródłaHolder, Jonathan Paul. "Resonant tunnelling spectroscopy of vertical GaAs/AlGaAs structures". Thesis, University of Exeter, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312281.
Pełny tekst źródłaStay, Justin L. "Multi-beam-interference-based methodology for the fabrication of photonic crystal structures". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31783.
Pełny tekst źródłaCommittee Chair: Thomas K. Gaylord; Committee Member: Donald D. Davis; Committee Member: Gee-Kung Chang; Committee Member: Muhannad S. Bakir; Committee Member: Phillip N. First. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Refai, Khalil. "Effet de la méso-architecture sur le comportement en fatigue des structures lattices optimisées obtenues par fabrication additive". Thesis, Paris, HESAM, 2020. http://www.theses.fr/2020HESAE028.
Pełny tekst źródłaA numerical approach is proposed to assess the high cycle fatigue strength of periodic cellular structures produced by SLM under multiaxial loads. The model is based on a general numerical homogenisation scheme and an explicit description of the Elementary Cell combined to an extreme values analysis making use of a fatigue indicator parameter based on Crossland’s criterion. Also, geometric discrepancy and surface roughness are experimentally characterised and considered in the numerical model using three methods which are compared to the experimental fatigue strength. Topology optimisation (TO) pushes the boundaries of design freedom even further. In our study, Topology Optimisation was developed to prevent fatigue failure using SIMP method revisited and reformulated within the mathematical framework of Non-Uniform Rational BSpline functions
Chen, Li. "A quasicontinuum approach towards mechanical simulations of periodic lattice structures". Doctoral thesis, Universite Libre de Bruxelles, 2020. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/314314.
Pełny tekst źródłaDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Książki na temat "Structures lattices"
Müller-Hoissen, Folkert, Jean Marcel Pallo i Jim Stasheff, red. Associahedra, Tamari Lattices and Related Structures. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0405-9.
Pełny tekst źródłaFuentes, Benjamin J. Optical lattices: Structures, atoms, and solitons. Hauppauge, N.Y: Nova Science Publishers, 2012.
Znajdź pełny tekst źródłaGalvin, Brian Russell. Numerical studies of localized vibrating structures in nonlinear lattices. Monterey, Calif: Naval Postgraduate School, 1991.
Znajdź pełny tekst źródłaInternational Conference on Modulated Semiconductor Structures (3rd 1987 Montpellier, France). 3rd International Conference on Modulated Semiconductor Structures, 6-10 July 1987, Montpellier, France. Cedex: Editions de Physique, 1987.
Znajdź pełny tekst źródła1956-, Strien Sebastian van, Verduyn Lunel S. M i Koninklijke Nederlandse Akademie van Wetenschappen. Afdeling Natuurkunde., red. Stochastic and spatial structures of dynamical systems: Proceedings of the colloquium, Amsterdam, 26-27 January 1995. Amsterdam: North-Holland, 1996.
Znajdź pełny tekst źródłaC, McGill T. Device Physics of Superlattices and Small Structures. Ft. Belvoir: Defense Technical Information Center, 1987.
Znajdź pełny tekst źródłaH, Sowa, red. Cubic structure types described in their space groups with the aid of frameworks. Karlsruhe, [West Germany]: Fachinformationszentrum Energie, Physik, Mathematik, 1985.
Znajdź pełny tekst źródłaLeung, Henry Hon Hung. Trellis structure and decoding of lattices. Ottawa: National Library of Canada, 1994.
Znajdź pełny tekst źródłaAmerican Society of Civil Engineers., red. Design of latticed steel transmission structures. Reston, Va: American Society of Civil Engineers, 2000.
Znajdź pełny tekst źródłaAmerican Society of Civil Engineers. Design of latticed steel transmission structures. Reston, Virginia: American Society of Civil Engineers, 2015.
Znajdź pełny tekst źródłaCzęści książek na temat "Structures lattices"
Loeb, Arthur L. "Lattices and Lattice Complexes". W Space Structures, 123–25. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0437-4_15.
Pełny tekst źródłaMeyer-Nieberg, Peter. "Structures in Banach Lattices". W Banach Lattices, 321–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76724-1_5.
Pełny tekst źródłaLoeb, Arthur L. "Orthorhombic and Tetragonal Lattices". W Space Structures, 139–46. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0437-4_18.
Pełny tekst źródłaSenthil Kumar, B. V., i Hemen Dutta. "Lattices and Boolean Algebra". W Discrete Mathematical Structures, 223–56. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020. | Series: Mathematics and its applications : modelling, engineering, and social sciences: CRC Press, 2019. http://dx.doi.org/10.1201/9780429053689-5.
Pełny tekst źródłaEilbeck, J. C., i A. C. Scott. "Quantum Lattices". W Nonlinear Coherent Structures in Physics and Biology, 1–14. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1343-2_1.
Pełny tekst źródłaSuryanarayana, C., i M. Grant Norton. "Lattices and Crystal Structures". W X-Ray Diffraction, 21–62. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0148-4_2.
Pełny tekst źródłaCole, James A. "Non-distributive Cancellative Residuated Lattices". W Ordered Algebraic Structures, 205–12. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3627-4_10.
Pełny tekst źródłaJipsen, P., i C. Tsinakis. "A Survey of Residuated Lattices". W Ordered Algebraic Structures, 19–56. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3627-4_3.
Pełny tekst źródłaConrad, P. F., S. M. Lin i D. G. Nelson. "Torsion Classes of Vector Lattices". W Ordered Algebraic Structures, 11–30. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1723-4_2.
Pełny tekst źródłaTrubin, Alexander. "Antenna Structures on Lattices of". W Lattices of Dielectric Resonators, 97–116. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25148-6_5.
Pełny tekst źródłaStreszczenia konferencji na temat "Structures lattices"
Cheng, Dali, Eran Lustig, Kai Wang i Shanhui Fan. "Band structure measurements in multi-dimensional synthetic frequency lattices". W CLEO: Fundamental Science, FTh4D.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fth4d.6.
Pełny tekst źródłaChen, Jiangce, Martha Baldwin, Sneha Narra i Christopher McComb. "Multi-Lattice Topology Optimization With Lattice Representation Learned by Generative Models". W ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/detc2024-145592.
Pełny tekst źródłaToropova, Marina M., i Craig A. Steeves. "Thermal Actuation Through Bimaterial Lattices". W ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-8855.
Pełny tekst źródłaAyaz Uddin, Mohammed, Imad Barsoum, Shanmugam Kumar i Andreas Schiffer. "Enhancing Energy Absorption Capacity of Pyramidal Lattice Structures via Geometrical Tailoring and 3D Printing". W ASME 2024 Aerospace Structures, Structural Dynamics, and Materials Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/ssdm2024-121512.
Pełny tekst źródłaVenugopal, Vysakh, Matthew McConaha i Sam Anand. "Topology Optimization for Multi-Material Lattice Structures With Tailorable Material Properties for Additive Manufacturing". W ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2989.
Pełny tekst źródłaHathcock, Megan, Bogdan Popa i Kon-Well Wang. "Continuous Dirac Cone Evolution in Modulated Phononic Crystal". W ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95839.
Pełny tekst źródłaZhang, Botao, Kunal Mhapsekar i Sam Anand. "Design of Variable-Density Structures for Additive Manufacturing Using Gyroid Lattices". W ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68047.
Pełny tekst źródłaKapral, Raymond. "Discrete Dynamics of Spatio-Temporal Structures". W Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.is9.
Pełny tekst źródłaMcConaha, Matthew, i Sam Anand. "Design of Stochastic Lattice Structures for Additive Manufacturing". W ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8439.
Pełny tekst źródłaLishi Zhang, Yi Su i Xiaodong Liu. "AFS Structures and Concept Lattices". W 2006 6th World Congress on Intelligent Control and Automation. IEEE, 2006. http://dx.doi.org/10.1109/wcica.2006.1712820.
Pełny tekst źródłaRaporty organizacyjne na temat "Structures lattices"
Fry, A. T., L. E. Crocker, M. J. Lodeiro, M. Poole, P. Woolliams, A. Koko, N. Leung, D. England i C. Breheny. Tensile property measurement of lattice structures. National Physical Laboratory, lipiec 2023. http://dx.doi.org/10.47120/npl.mat119.
Pełny tekst źródłaWilliams, James H., i Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, październik 1987. http://dx.doi.org/10.21236/ada190037.
Pełny tekst źródłaWilliams, James H., i Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, październik 1987. http://dx.doi.org/10.21236/ada190611.
Pełny tekst źródłaWilliams, James H., i Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, październik 1985. http://dx.doi.org/10.21236/ada170316.
Pełny tekst źródłaLiu, Keh-Fei, i Terrence Draper. Lattice QCD Calculation of Nucleon Structure. Office of Scientific and Technical Information (OSTI), sierpień 2016. http://dx.doi.org/10.2172/1323029.
Pełny tekst źródłaSkowronski, Marek, i D. W. Greve. Growth of Lattice Matched Nitride Alloys and Structures. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1998. http://dx.doi.org/10.21236/ada354115.
Pełny tekst źródłaBraun, D. W., G. W. Crabtree, H. G. Kaper, G. K. Leaf, D. M. Levine, V. M. Vinokur i A. E. Koshelev. The structure of a moving vortex lattice. Office of Scientific and Technical Information (OSTI), listopad 1995. http://dx.doi.org/10.2172/179299.
Pełny tekst źródłaParsa, Z., i S. Tepikian. Overview of the structure resonances in the AGS-Booster lattices. Office of Scientific and Technical Information (OSTI), czerwiec 1986. http://dx.doi.org/10.2172/1150423.
Pełny tekst źródłaHughes, Nathan. Computed Tomography (CT) Analysis of 3D Printed Lattice Structures. Office of Scientific and Technical Information (OSTI), maj 2023. http://dx.doi.org/10.2172/1975633.
Pełny tekst źródłaWilliams, James H., Nagem Jr. i Raymond J. Computation of Natural Frequencies of Planar Lattice Structure. Fort Belvoir, VA: Defense Technical Information Center, marzec 1987. http://dx.doi.org/10.21236/ada185387.
Pełny tekst źródła