Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Styrene butadiene Rubber nanoparticles.

Artykuły w czasopismach na temat „Styrene butadiene Rubber nanoparticles”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Styrene butadiene Rubber nanoparticles”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Khan, Mujahid, Satyendra Mishra, Debdatta Ratna, Shriram Sonawane, and Navinchandra Gopal Shimpi. "Investigation of thermal and mechanical properties of styrene–butadiene rubber nanocomposites filled with SiO2–polystyrene core–shell nanoparticles." Journal of Composite Materials 54, no. 14 (2019): 1785–95. http://dx.doi.org/10.1177/0021998319886618.

Pełny tekst źródła
Streszczenie:
The present study investigates the effect of SiO2–polystyrene core–shell nanoparticles on properties of styrene–butadiene rubber nanocomposites. Meanwhile, SiO2–polystyrene core–shell nanoparticles were synthesized under controlled ultrasound assisted microemulsion technique. Further, as-synthesized SiO2–polystyrene nanoparticles were subjected to various characterization techniques, such as X-ray diffraction, field emission scanning electron microscope, transmission electron microscope, and Fourier transform infrared spectroscopy to know its size, shape, and presence of functional groups. The
Style APA, Harvard, Vancouver, ISO itp.
2

Weng, Gengsheng, Aijun Chang, Kun Fu, Jian Kang, Yaxuan Ding, and Zhongren Chen. "Crack growth mechanism of styrene-butadiene rubber filled with silica nanoparticles studied by small angle X-ray scattering." RSC Advances 6, no. 10 (2016): 8406–15. http://dx.doi.org/10.1039/c5ra26238k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Vasudeo, Rane Ajay, V. K. Abitha, P. S. Suchithra, and K. Rajkumar. "Comparative Studies in Dispersing Nanoparticles in a Styrene Butadiene Rubber Matrix via Different Blending Methods." Journal of Nano Research 32 (May 2015): 43–50. http://dx.doi.org/10.4028/www.scientific.net/jnanor.32.43.

Pełny tekst źródła
Streszczenie:
InIncorporation and dispersion of particulate fillers are the two steps that are necessary to achieve optimum properties in a rubber compound, i.e. mechanical, thermal properties. The incorporation and dispersion of particulate fillers depend on their particle size, smaller particle size is difficult to incorporate but easier to disperse in a rubber matrix while large dimension particle size filler are easier to incorporate but difficult to disperse. Hence, in the current work we have studied different methods of incorporating nano particles in to the matrix of styrene butadiene rubber and fur
Style APA, Harvard, Vancouver, ISO itp.
4

Zhang, Zhou Da, Xue Mei Chen, and Guo Liang Qu. "Particle Size, Structure and Powdering Process of Calcium Carbonate Nanoparticles Filled Powdered Styrene-Butadiene Rubber." Advanced Materials Research 415-417 (December 2011): 237–42. http://dx.doi.org/10.4028/www.scientific.net/amr.415-417.237.

Pełny tekst źródła
Streszczenie:
Calcium carbonate nanoparticles (nano-CaCO3) filled powdered styrene-butadiene rubber (P(SBR/CaCO3) was prepared by adding nano-CaCO3 particles, encapsulant and coagulant to styrene-butadiene rubber (SBR) latex by coacervation, and the particle size distribution, structure were studied. Scanning electron microscopy (SEM) was used to investigate the (P(SBR/CaCO3) particle structure, and a powdering model was proposed to describe the powdering process. The process includes: (i) the latex particles associated with the dispersed nano-CaCO3 particles (adsorption process) to form “new particles” and
Style APA, Harvard, Vancouver, ISO itp.
5

Jasna, V. C., and M. T. Ramesan. "Fabrication of novel nanocomposites from styrene-butadiene rubber/zinc sulphide nanoparticles." Journal of Materials Science 53, no. 11 (2018): 8250–62. http://dx.doi.org/10.1007/s10853-018-2173-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Lu, Ming, Jianjun Zhou, Liansheng Wang, et al. "Design and Preparation of Cross-Linked Polystyrene Nanoparticles for Elastomer Reinforcement." Journal of Nanomaterials 2010 (2010): 1–8. http://dx.doi.org/10.1155/2010/352914.

Pełny tekst źródła
Streszczenie:
Cross-linked polystyrene (PS) particles in a latex form were synthesized by free radical emulsion polymerization. The nano-PS-filled elastomer composites were prepared by the energy-saving latex compounding method. Results showed that the PS particles took a spherical shape in the size of 40–60 nm with a narrow size distribution, and the glass-transition temperature of the PS nanoparticles increased with the cross-linking density. The outcomes from the mechanical properties demonstrated that when filled into styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), and natural rubber (NR
Style APA, Harvard, Vancouver, ISO itp.
7

Wang, Qingguo, Jingrui Liu, Quande Cui, and Xiao Xiao. "EFFECT OF ELASTOMER NANOPARTICLES ON IMPROVING THE WET SKID RESISTANCE OF SBR/NR COMPOSITES." Rubber Chemistry and Technology 89, no. 2 (2016): 262–71. http://dx.doi.org/10.5254/rct.15.84849.

Pełny tekst źródła
Streszczenie:
ABSTRACT How to improve the wet skid resistance of rubber composites for tire tread while decreasing the rolling resistance is very important for both rubber researchers and industry. The irradiation-vulcanized elastomer particles, ultrafine fully-vulcanized powder nitrile butadiene rubber (UFPNBR), having the diameter of about 80 nm, were studied on modifying the dynamic mechanical properties of styrene butadiene rubber/natural rubber (SBR/NR) composites for tire tread. It is notable that the UFPNBR particles can improve the tanδ values of SBR/NR composites in a temperature range from −10 to
Style APA, Harvard, Vancouver, ISO itp.
8

Alexandrescu, Laurentia, Maria Sonmez, Mihaela Nituica, Dana Gurau, and Natalia Popa. "Hybrid Bipolymeric Structures Based on Butadiene-co-Acrylonitrile and Styrene-Butadiene Rubber Reinforced with Nanoparticles." Leather and Footwear Journal 14, no. 1 (2014): 39–52. http://dx.doi.org/10.24264/lfj.14.1.4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Staropoli, Mariapaola, Vincent Rogé, Enzo Moretto, et al. "Hybrid Silica-Based Fillers in Nanocomposites: Influence of Isotropic/Isotropic and Isotropic/Anisotropic Fillers on Mechanical Properties of Styrene-Butadiene (SBR)-Based Rubber." Polymers 13, no. 15 (2021): 2413. http://dx.doi.org/10.3390/polym13152413.

Pełny tekst źródła
Streszczenie:
The improvement of mechanical properties of polymer-based nanocomposites is usually obtained through a strong polymer–silica interaction. Most often, precipitated silica nanoparticles are used as filler. In this work, we study the synergetic effect occurring between dual silica-based fillers in a styrene-butadiene rubber (SBR)/polybutadiene (PBD) rubber matrix. Precipitated Highly Dispersed Silica (HDS) nanoparticles (10 nm) have been associated with spherical Stöber silica nanoparticles (250 nm) and anisotropic nano-Sepiolite. By imaging filler at nano scale through Scanning Transmission Elec
Style APA, Harvard, Vancouver, ISO itp.
10

Jasna, V. C., T. Anilkumar, and M. T. Ramesan. "Nanocomposite materials based on zinc sulfide nanoparticles reinforced chlorinated styrene butadiene rubber." Journal of Applied Polymer Science 135, no. 30 (2018): 46538. http://dx.doi.org/10.1002/app.46538.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Boonmahitthisud, Anyaporn, and Zheng Hua Song. "Rubber Blend of 80/20 NR/SBR Reinforced with Nanosilica and PS-Encapsulated Nanosilica." Materials Science Forum 695 (July 2011): 332–35. http://dx.doi.org/10.4028/www.scientific.net/msf.695.332.

Pełny tekst źródła
Streszczenie:
In this study, rubber blend of natural rubber (NR) and styrene butadiene rubber (SBR) at 80/20 NR/SBR was reinforced with nanosilica (nSiO2) and polystyrene-encapsulated nanosilica (PS-nSiO2) in the latex state. The latex of PS-nSiO2 was synthesized by in situ differential microemulsion polymerization using sodium dodecyl sulfate and azobisisobutyronitrile as the surfactant and initiator, respectively. The nanoparticles at the amount of 0.1, 0.2, 0.3 and 0.4 parts per hundred of rubber (based on dry weight of nSiO2) were dispersed in the rubber blend compound and subsequently cured at 80°C for
Style APA, Harvard, Vancouver, ISO itp.
12

Shinohara, Yuya, Hiroyuki Kishimoto, Tomomi Masui, Shota Hattori, Naoko Yamaguchi, and Yoshiyuki Amemiya. "Microscopic structural response of nanoparticles in styrene–butadiene rubber under cyclic uniaxial elongation." Polymer Journal 51, no. 2 (2018): 161–71. http://dx.doi.org/10.1038/s41428-018-0135-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Wang, Cheng Chien, Chih Lung Chiu, and Jian Sheng Shen. "Preparation of Polymer Nanoparticles and Application on Nitrile-Butadiene Rubber Reinforcement." Materials Science Forum 900 (July 2017): 35–39. http://dx.doi.org/10.4028/www.scientific.net/msf.900.35.

Pełny tekst źródła
Streszczenie:
The different amount of hydrophilic hydroxyl group, including 3, 5, 7 and 10 wt.% copoly (styrene-co - divinyl benzene – co - 2-hydroxylethylenemethacrylate) (poly (St-co-DVB- co -HEMA) s) nanoparticles were synthesized via microemulsion polymerization in the present paper. The average size of the poly (St-co-DVB-co-HEMA) s was ca. 44 nm after zetasizer (DLS) measurement and SEM observation. The characteristic peaks at 3200 ~3600 cm-1 in FTIR was assigned at hydroxyl group of HEMA unit. The NBR/poly (St-co-DVB-co-HEMA) s composites films with 250 μm thickness were prepared simply via latex mix
Style APA, Harvard, Vancouver, ISO itp.
14

Bieliński, Dariusz M., Katarzyna Klajn, Tomasz Gozdek, Rafał Kruszyński, and Marcin Świątkowski. "Influence of n-ZnO Morphology on Sulfur Crosslinking and Properties of Styrene-Butadiene Rubber Vulcanizates." Polymers 13, no. 7 (2021): 1040. http://dx.doi.org/10.3390/polym13071040.

Pełny tekst źródła
Streszczenie:
This paper examines the influence of the morphology of zinc oxide nanoparticles (n-ZnO) on the activation energy, vulcanization parameters, crosslink density, crosslink structure, and mechanical properties in the extension of the sulfur vulcanizates of styrene-butadiene rubber (SBR). Scanning electron microscopy was used to determine the particle size distribution and morphology, whereas the specific surface area (SSA) and squalene wettability of the n-ZnO nanoparticles were adequately evaluated using the Brunauer–Emmet–Teller (BET) equation and tensiometry. The n-ZnO were then added to the SB
Style APA, Harvard, Vancouver, ISO itp.
15

Saatchi, M. M., and A. Shojaei. "Mechanical performance of styrene-butadiene-rubber filled with carbon nanoparticles prepared by mechanical mixing." Materials Science and Engineering: A 528, no. 24 (2011): 7161–72. http://dx.doi.org/10.1016/j.msea.2011.05.089.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Monfared, Alireza, and Azam Jalali-Arani. "Morphology and rheology of (styrene-butadiene rubber/acrylonitrile-butadiene rubber) blends filled with organoclay: The effect of nanoparticle localization." Applied Clay Science 108 (May 2015): 1–11. http://dx.doi.org/10.1016/j.clay.2015.02.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Bonnevide, Marine, Trang N. T. Phan, Nicolas Malicki, et al. "Synthesis of polyisoprene, polybutadiene and Styrene Butadiene Rubber grafted silica nanoparticles by nitroxide-mediated polymerization." Polymer 190 (March 2020): 122190. http://dx.doi.org/10.1016/j.polymer.2020.122190.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Arantes, Tatiane M., Renata L. Sala, Edson R. Leite, Elson Longo, and Emerson R. Camargo. "Comparison of the nanoparticles performance in the photocatalytic degradation of a styrene-butadiene rubber nanocomposite." Journal of Applied Polymer Science 128, no. 4 (2012): 2368–74. http://dx.doi.org/10.1002/app.38281.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Wang, Wei-Zhi, and Tianxi Liu. "Mechanical properties and morphologies of polypropylene composites synergistically filled by styrene-butadiene rubber and silica nanoparticles." Journal of Applied Polymer Science 109, no. 3 (2008): 1654–60. http://dx.doi.org/10.1002/app.28021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Jovanović, Slaviša, Suzana Samaržija-Jovanović, Gordana Marković, Vojislav Jovanović, Tijana Adamović, and Milena Marinović-Cincović. "Ternary NR/BR/SBR rubber blend nanocomposites." Journal of Thermoplastic Composite Materials 31, no. 2 (2017): 265–87. http://dx.doi.org/10.1177/0892705717697778.

Pełny tekst źródła
Streszczenie:
The goal of this work was to synthesize and characterize ternary rubber blends based on polyisoprene (natural rubber (NR)), polybutadiene rubber (BR), and styrene–butadiene rubber (SBR) (NR/BR/SBR = 25/25/50) reinforced with different loading silica (SiO2) nanoparticles (0–100 part per hundred parts of rubber (phr)). The specimens were subjected to thermooxidative aging at 100°C, for two times: at 72 and 168 h, respectively, and then mechanically stretched to fracture by tension with a Zwick 1425 (Zwick GmbH, Ulm, Germany) universal tensile testing machine. Rheological and mechanical propertie
Style APA, Harvard, Vancouver, ISO itp.
21

Das, Chayan, Naresh D. Bansod, Bharat P. Kapgate, K. Rajkumar, and Amit Das. "Incorporation of titania nanoparticles in elastomer matrix to develop highly reinforced multifunctional solution styrene butadiene rubber composites." Polymer 162 (January 2019): 1–10. http://dx.doi.org/10.1016/j.polymer.2018.12.022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Saatchi, Mohammad Mahdi, and Akbar Shojaei. "Effect of carbon-based nanoparticles on the cure characteristics and network structure of styrene-butadiene rubber vulcanizate." Polymer International 61, no. 4 (2012): 664–72. http://dx.doi.org/10.1002/pi.4132.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Idrees, Maria, Farhan Saeed, Abreeza Amin, and Tousif Hussain. "Improvement in compressive strength of Styrene-Butadiene-Rubber (SBR) modified mortars by using powder form and nanoparticles." Journal of Building Engineering 44 (December 2021): 102651. http://dx.doi.org/10.1016/j.jobe.2021.102651.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Boonmahitthisud, Anyaporn, Peeraphong Pokphat, Phasawat Chaiwutthinan, and Saowaroj Chuayjuljit. "Nanocomposites of NR/SBR Blend Prepared by Latex Casting Method: Effects of Nano-TiO2 and Polystyrene-Encapsulated Nano-TiO2 on the Cure Characteristics, Physical Properties, and Morphology." Journal of Nanomaterials 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/7676158.

Pełny tekst źródła
Streszczenie:
Nanocomposites of 80/20 (w/w) natural rubber (NR)/styrene butadiene rubber (SBR) blend with four loadings of either nanosized titanium dioxide (nTiO2) or polystyrene-encapsulated nTiO2 (PS-nTiO2), ranging from 3 to 9 parts by weight per hundred of rubber (phr), were prepared by latex casting method. The PS-nTiO2 synthesized via in situ differential microemulsion polymerization displayed a core-shell morphology (nTiO2 core and PS shell) with an average diameter of 42 nm. The cure characteristics (scorch time, cure time, and cure rate index), mechanical properties (tensile properties, tear stren
Style APA, Harvard, Vancouver, ISO itp.
25

Maciejewska, Magdalena, Anna Sowińska, and Agata Grocholewicz. "Zinc Complexes with 1,3-Diketones as Activators for Sulfur Vulcanization of Styrene-Butadiene Elastomer Filled with Carbon Black." Materials 14, no. 14 (2021): 3804. http://dx.doi.org/10.3390/ma14143804.

Pełny tekst źródła
Streszczenie:
Zinc oxide nanoparticles (N-ZnO) and zinc complexes with 1,3-diketones of different structures were applied instead of microsized zinc oxide (M-ZnO) to activate the sulfur vulcanization of styrene-butadiene rubber (SBR). The influence of vulcanization activators on the cure characteristics of rubber compounds, as well as crosslink density and functional properties of SBR vulcanizates, such as tensile properties, hardness, damping behavior, thermal stability and resistance to thermo-oxidative aging was explored. Applying N-ZnO allowed to reduce the content of zinc by 40% compared to M-ZnO witho
Style APA, Harvard, Vancouver, ISO itp.
26

Robertson, Christopher G., Sankar Raman Vaikuntam, and Gert Heinrich. "A Nonequilibrium Model for Particle Networking/Jamming and Time-Dependent Dynamic Rheology of Filled Polymers." Polymers 12, no. 1 (2020): 190. http://dx.doi.org/10.3390/polym12010190.

Pełny tekst źródła
Streszczenie:
We describe an approach for modeling the filler network formation kinetics of particle-reinforced rubbery polymers—commonly called filler flocculation—that was developed by employing parallels between deformation effects in jammed particle systems and the influence of temperature on glass-forming materials. Experimental dynamic viscosity results were obtained concerning the strain-induced particle network breakdown and subsequent time-dependent reformation behavior for uncross-linked elastomers reinforced with carbon black and silica nanoparticles. Using a relaxation time function that depends
Style APA, Harvard, Vancouver, ISO itp.
27

Gabibov, I. A., O. A. Dyshin, and K. B. Rustamova. "Formation of the properties of the structure of disperse-filled polymer composites." Plasticheskie massy, no. 9-10 (November 2, 2019): 23–26. http://dx.doi.org/10.35164/0554-2901-2019-9-10-23-26.

Pełny tekst źródła
Streszczenie:
The influence of the structure on the properties of the metal-polymer composite consisting of a polymer matrix in the form of epoxy resin (ED-20) with butadiene-styrene rubber (BSK), dispersedly filled with copper nanoparticles, is investigated. In the framework of fractal analysis, the real diameter of the aggregates of the initial filler particles was calculated for various concentrations and size of the filling particles and for different compositions of the polymer matrix. The concept of the structure of a polymer composite as a combination of two fractals (multifractals) was substantially
Style APA, Harvard, Vancouver, ISO itp.
28

Myung, S. T., S. Sakurada, M. Kumagai, and H. Yashiro. "A Promising Alternative to PEMFC Graphite Bipolar Plates: Surface Modified Type 304 Stainless Steel with TiN Nanoparticles and Elastic Styrene Butadiene Rubber Particles." Fuel Cells 10, no. 4 (2010): 545–55. http://dx.doi.org/10.1002/fuce.200900086.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Bouty, Adrien, Laurent Petitjean, Julien Chatard, et al. "Interplay between polymer chain conformation and nanoparticle assembly in model industrial silica/rubber nanocomposites." Faraday Discussions 186 (2016): 325–43. http://dx.doi.org/10.1039/c5fd00130g.

Pełny tekst źródła
Streszczenie:
The question of the influence of nanoparticles (NPs) on chain dimensions in polymer nanocomposites (PNCs) has been treated mainly through the fundamental way using theoretical or simulation tools and experiments on well-defined model PNCs. Here we present the first experimental study on the influence of NPs on the polymer chain conformation for PNCs designed to be as close as possible to industrial systems employed in the tire industry. PNCs are silica nanoparticles dispersed in a styrene-butadiene-rubber (SBR) matrix whose NP dispersion can be managed by NP loading with interfacial coatings o
Style APA, Harvard, Vancouver, ISO itp.
30

Mankar, Rani, and Wasudeo Gurnule. "Synthesis, Characterization, Environmental Properties and Mechanical Studies of SBR-Nano Aluminum Oxide Composites." Current Applied Polymer Science 3, no. 2 (2019): 139–53. http://dx.doi.org/10.2174/2452271603666190614164629.

Pełny tekst źródła
Streszczenie:
Background: Rubber or nano aluminum oxide composites may be considered as potential materials in mechanical applications because of the adaptability of polymer properties of nanometric substances. Rubber nano-composite is prepared by using the emulsion polymerization method. Mechanical properties and environmental resistance properties are evaluated for a better rubber-filler interaction. Purpose: In this examination, the Raman spectroscopy and the mechanical properties of nanocomposites are based on Styrene-Butadiene rubber (SBR) and were explored within the sight of nano aluminum oxide addit
Style APA, Harvard, Vancouver, ISO itp.
31

Scotti, Roberto, Lucia Conzatti, Massimiliano D'Arienzo, et al. "Shape controlled spherical (0D) and rod-like (1D) silica nanoparticles in silica/styrene butadiene rubber nanocomposites: Role of the particle morphology on the filler reinforcing effect." Polymer 55, no. 6 (2014): 1497–506. http://dx.doi.org/10.1016/j.polymer.2014.01.025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Bokobza, Liliane. "ELASTOMERIC COMPOSITES BASED ON NANOSPHERICAL PARTICLES AND CARBON NANOTUBES: A COMPARATIVE STUDY." Rubber Chemistry and Technology 86, no. 3 (2013): 423–48. http://dx.doi.org/10.5254/rct.13.86983.

Pełny tekst źródła
Streszczenie:
ABSTRACT The reinforcement of elastomeric materials by addition of mineral fillers represents one of the most important aspects in the field of rubber science and technology. The improvement in mechanical properties arises from hydrodynamic effects depending mainly on the amount of filler and the aspect ratio of the particles and also on polymer–filler interactions depending on the surface characteristics of the filler particles and the chemical nature of the polymer. The past few years have seen the extensive use of nanometer-scale particles of different morphologies on account of the small s
Style APA, Harvard, Vancouver, ISO itp.
33

Sreeja, T. D., and S. K. N. Kutty. "Styrene butadiene rubber/reclaimed rubber blends." International Journal of Polymeric Materials 52, no. 7 (2003): 599–609. http://dx.doi.org/10.1080/00914030304902.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Botros, S. H., A. F. Moustafa, and S. A. Ibrahim. "Homogeneous Styrene Butadiene/Acrylonitrile Butadiene Rubber Blends." Polymer-Plastics Technology and Engineering 45, no. 4 (2006): 503–12. http://dx.doi.org/10.1080/03602550600553705.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Liu, Xiaobo, Ying Gao, Lina Bian, and Zhong Wang. "Influence of ultrafine full-vulcanized styrene-butadiene powdered rubber on dynamic mechanical properties of natural rubber/butadiene rubber and styrene-butadiene rubber/butadiene rubber blends." Polymer Bulletin 72, no. 8 (2015): 2001–17. http://dx.doi.org/10.1007/s00289-015-1385-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Ikeda, Yuko. "Graded styrene-butadiene rubber vulcanizates." Journal of Applied Polymer Science 87, no. 1 (2002): 61–67. http://dx.doi.org/10.1002/app.11670.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Il'in, V. M., and A. K. Rezova. "Styrene Butadiene Rubber: Production Worldwide." International Polymer Science and Technology 42, no. 10 (2015): 35–44. http://dx.doi.org/10.1177/0307174x1504201008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Ramesan, M. T., George Mathew, Baby Kuriakose, and Rosamma Alex. "Role of dichlorocarbene modified styrene butadiene rubber in compatibilisation of styrene butadiene rubber and chloroprene rubber blends." European Polymer Journal 37, no. 4 (2001): 719–28. http://dx.doi.org/10.1016/s0014-3057(00)00157-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Romero-Sánchez, María D., M. Mercedes Pastor-Blas, José Miguel Martín-Martínez, and M. J. Walzak. "UV treatment of synthetic styrene-butadiene-styrene rubber." Journal of Adhesion Science and Technology 17, no. 1 (2003): 25–45. http://dx.doi.org/10.1163/15685610360472420.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Singh, R. P., S. M. Desai, S. S. Solanky, and P. N. Thanki. "Photodegradation and stabilization of styrene-butadiene-styrene rubber." Journal of Applied Polymer Science 75, no. 9 (2000): 1103–14. http://dx.doi.org/10.1002/(sici)1097-4628(20000228)75:9<1103::aid-app3>3.0.co;2-m.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Zhao, Suhe, Hua Zou, and Xingying Zhang. "Structural morphology and properties of star styrene-isoprene-butadiene rubber and natural rubber/star styrene-butadiene rubber blends." Journal of Applied Polymer Science 93, no. 1 (2004): 336–41. http://dx.doi.org/10.1002/app.20385.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

George, Soney C., K. N. Ninan, and Sabu Thomas. "Permeation of nitrogen and oxygen gases through styrene–butadiene rubber, natural rubber and styrene–butadiene rubber/natural rubber blend membranes." European Polymer Journal 37, no. 1 (2001): 183–91. http://dx.doi.org/10.1016/s0014-3057(00)00083-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Wei, Dongya, Changming Mao, Shuai Li, and Zhaobo Wang. "Dynamically Vulcanized Nitrile Butadiene Rubber/Acrylonitrile-Butadiene-Styrene Terpolymer Blends Compatibilized by Styrene-Butadiene-Styrene Block Copolymer." Journal of Macromolecular Science, Part B 53, no. 4 (2014): 601–14. http://dx.doi.org/10.1080/00222348.2013.857533.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Wang, Huiming, Ken Wang, Wei Fan, and Shengqiang Cai. "Rupture of swollen styrene butadiene rubber." Polymer Testing 61 (August 2017): 100–105. http://dx.doi.org/10.1016/j.polymertesting.2017.05.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Wang, Chaoyang, Xuepin Huang, and Jihua Yang. "Cationic cyclization of styrene–butadiene rubber." European Polymer Journal 37, no. 9 (2001): 1895–99. http://dx.doi.org/10.1016/s0014-3057(01)00043-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

WU, D., S. BATEMAN, and M. PARTLETT. "Ground rubber/acrylonitrile–butadiene–styrene composites." Composites Science and Technology 67, no. 9 (2007): 1909–19. http://dx.doi.org/10.1016/j.compscitech.2006.10.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Ramesan, M. T., and Rosamma Alex. "Dichlorocarbene modification of styrene-butadiene rubber." Journal of Applied Polymer Science 68, no. 1 (1998): 153–60. http://dx.doi.org/10.1002/(sici)1097-4628(19980404)68:1<153::aid-app17>3.0.co;2-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Habeeb Rahiman, K., G. Unnikrishnan, A. Sujith, and C. K. Radhakrishnan. "Cure characteristics and mechanical properties of styrene–butadiene rubber/acrylonitrile butadiene rubber." Materials Letters 59, no. 6 (2005): 633–39. http://dx.doi.org/10.1016/j.matlet.2004.10.050.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Noriman, N. Z., H. Ismail, and Azura Rashid. "Curing Characteristics and Mechanical and Morphological Properties of Styrene Butadiene Rubber/Virgin Acrylonitrile-Butadiene Rubber (SBR/vNBR) and Styrene Butadiene Rubber/Recycled Acrylonitrile-Butadiene Rubber (SBR/rNBR) Blends." Polymer-Plastics Technology and Engineering 47, no. 10 (2008): 1016–23. http://dx.doi.org/10.1080/03602550802355206.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Venter, S. A. S., M. H. Kunita, R. Matos, et al. "Thermal and scanning electron microscopy/energy-dispersive spectroscopy analysis of styrene-butadiene rubber-butadiene rubber/silicon dioxide and styrene-butadiene rubber-butadiene rubber/carbon black-silicon dioxide composites." Journal of Applied Polymer Science 96, no. 6 (2005): 2273–79. http://dx.doi.org/10.1002/app.21111.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!