Artykuły w czasopismach na temat „Subwavelength grating metamaterials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Subwavelength grating metamaterials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Luque-González, José Manuel, Alejandro Sánchez-Postigo, Abdelfettah Hadij-ElHouati, et al. "A review of silicon subwavelength gratings: building break-through devices with anisotropic metamaterials." Nanophotonics 10, no. 11 (2021): 2765–97. http://dx.doi.org/10.1515/nanoph-2021-0110.
Pełny tekst źródłaSánchez-Postigo, Alejandro, Pablo Ginel-Moreno, Alejandro Ortega-Moñux, et al. "Building high-performance integrated optical devices using subwavelength grating metamaterials -INVITED." EPJ Web of Conferences 255 (2021): 01001. http://dx.doi.org/10.1051/epjconf/202125501001.
Pełny tekst źródłaParra, Jorge. "Polarization-Insensitive Silicon Grating Couplers via Subwavelength Metamaterials and Metaheuristic Optimization." Photonics 12, no. 5 (2025): 428. https://doi.org/10.3390/photonics12050428.
Pełny tekst źródłaPérez-Armenta, Carlos, Alejandro Ortega-Moñux, José Manuel Luque-González, et al. "Polarization independent 2×2 multimode interference coupler with bricked subwavelength metamaterial." EPJ Web of Conferences 266 (2022): 01009. http://dx.doi.org/10.1051/epjconf/202226601009.
Pełny tekst źródłaKameshkov, Oleg, Vasily Gerasimov, and Boris Knyazev. "Numerical Optimization of Refractive Index Sensors Based on Diffraction Gratings with High Aspect Ratio in Terahertz Range." Sensors 22, no. 1 (2021): 172. http://dx.doi.org/10.3390/s22010172.
Pełny tekst źródłaVakarin, Vladyslav, Daniele Melati, Thi Thuy Duong Dinh, et al. "Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography." Nanomaterials 11, no. 11 (2021): 2949. http://dx.doi.org/10.3390/nano11112949.
Pełny tekst źródłaFraser, William, Radovan Korček, Ivan Glesk, et al. "High-Efficiency Metamaterial-Engineered Grating Couplers for Silicon Nitride Photonics." Nanomaterials 14, no. 7 (2024): 581. http://dx.doi.org/10.3390/nano14070581.
Pełny tekst źródłaLuque‐González, José Manuel, Robert Halir, Juan Gonzalo Wangüemert‐Pérez, et al. "An Ultracompact GRIN‐Lens‐Based Spot Size Converter using Subwavelength Grating Metamaterials." Laser & Photonics Reviews 13, no. 11 (2019): 1900172. http://dx.doi.org/10.1002/lpor.201900172.
Pełny tekst źródłaBenedikovic, Daniel, Carlos Alonso-Ramos, Sylvain Guerber, et al. "Sub-decibel silicon grating couplers based on L-shaped waveguides and engineered subwavelength metamaterials." Optics Express 27, no. 18 (2019): 26239. http://dx.doi.org/10.1364/oe.27.026239.
Pełny tekst źródłaGonzález, Andrade David, Irene Olivares, de Cabo Raque Fernández, Jaime Vilas, Antonio Dias, and Velasco Aitor V. "Broadband three-mode converter and multiplexer based on cascaded symmetric Y-junctions and subwavelength engineered MMI and phase shifters." Optics and Laser Technology 164, no. 109513 (2023): 1–8. https://doi.org/10.1016/j.optlastec.2023.109513.
Pełny tekst źródłaBadri, S. Hadi, and M. M. Gilarlue. "Silicon nitride waveguide devices based on gradient-index lenses implemented by subwavelength silicon grating metamaterials." Applied Optics 59, no. 17 (2020): 5269. http://dx.doi.org/10.1364/ao.393501.
Pełny tekst źródłaChang, Ruei-Jan, and Chia-Chien Huang. "Simulation of a High-Performance Polarization Beam Splitter Assisted by Two-Dimensional Metamaterials." Nanomaterials 12, no. 11 (2022): 1852. http://dx.doi.org/10.3390/nano12111852.
Pełny tekst źródłaSun, Lu, Yong Zhang, Yu He, Hongwei Wang, and Yikai Su. "Subwavelength structured silicon waveguides and photonic devices." Nanophotonics 9, no. 6 (2020): 1321–40. http://dx.doi.org/10.1515/nanoph-2020-0070.
Pełny tekst źródłaKanamori, Yoshiaki, Daisuke Ema, and Kazuhiro Hane. "Miniature Spectroscopes with Two-Dimensional Guided-Mode Resonant Metal Grating Filters Integrated on a Photodiode Array." Materials 11, no. 10 (2018): 1924. http://dx.doi.org/10.3390/ma11101924.
Pełny tekst źródłaWu, Tiesheng, Xin Cheng, Yujing Lan, et al. "Numerical Study of Optical Nonreciprocal Transmission via Liquid Metamaterial Nonlinearity." Materials 18, no. 10 (2025): 2241. https://doi.org/10.3390/ma18102241.
Pełny tekst źródłaOrtega-Moñux, Alejandro, Jiří Čtyroký, Pavel Cheben, et al. "Disorder effects in subwavelength grating metamaterial waveguides." Optics Express 25, no. 11 (2017): 12222. http://dx.doi.org/10.1364/oe.25.012222.
Pełny tekst źródłaHalir, Robert, Alejandro Ortega-Monux, Daniel Benedikovic, et al. "Subwavelength-Grating Metamaterial Structures for Silicon Photonic Devices." Proceedings of the IEEE 106, no. 12 (2018): 2144–57. http://dx.doi.org/10.1109/jproc.2018.2851614.
Pełny tekst źródłaSarmiento-Merenguel, J. Darío, Alejandro Ortega-Moñux, Jean-Marc Fédéli, et al. "Controlling leakage losses in subwavelength grating silicon metamaterial waveguides." Optics Letters 41, no. 15 (2016): 3443. http://dx.doi.org/10.1364/ol.41.003443.
Pełny tekst źródłaCheben, Pavel, Jiří Čtyroký, Jens H. Schmid, et al. "Bragg filter bandwidth engineering in subwavelength grating metamaterial waveguides." Optics Letters 44, no. 4 (2019): 1043. http://dx.doi.org/10.1364/ol.44.001043.
Pełny tekst źródłaNaraine, Cameron M., Jeremy W. Miller, Henry C. Frankis, et al. "Subwavelength grating metamaterial waveguides functionalized with tellurium oxide cladding." Optics Express 28, no. 12 (2020): 18538. http://dx.doi.org/10.1364/oe.393729.
Pełny tekst źródłaXu, Xiaochuan, Zeyu Pan, Chi-Jui Chung, Ching-Wen Chang, Hai Yan, and Ray T. Chen. "Subwavelength Grating Metamaterial Racetrack Resonator for Sensing and Modulation." IEEE Journal of Selected Topics in Quantum Electronics 25, no. 3 (2019): 1–8. http://dx.doi.org/10.1109/jstqe.2019.2915980.
Pełny tekst źródłaShin, Yosep, Kyungtae Kim, Jaewhan Lee, Saman Jahani, Zubin Jacob, and Sangsik Kim. "Anisotropic metamaterials for scalable photonic integrated circuits: a review on subwavelength gratings for high-density integration." Nanophotonics 14, no. 9 (2025): 1311–31. https://doi.org/10.1515/nanoph-2024-0627.
Pełny tekst źródłaKim, Wonkyu, Junpeng Guo, and Joshua Hendrickson. "Subwavelength metal grating metamaterial for polarization-selective optical antireflection coating." Journal of the Optical Society of America B 32, no. 7 (2015): 1392. http://dx.doi.org/10.1364/josab.32.001392.
Pełny tekst źródłaLuque‐González, José Manuel, Alejandro Ortega‐Moñux, Robert Halir, et al. "Bricked Subwavelength Gratings: A Tailorable On‐Chip Metamaterial Topology." Laser & Photonics Reviews 15, no. 6 (2021): 2000478. http://dx.doi.org/10.1002/lpor.202000478.
Pełny tekst źródłaLuque-González, José Manuel, Alaine Herrero-Bermello, Alejandro Ortega-Moñux, et al. "Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides." Optics Letters 43, no. 19 (2018): 4691. http://dx.doi.org/10.1364/ol.43.004691.
Pełny tekst źródłaMohammadi Estakhri, Nasim, Christos Argyropoulos, and Andrea Alù. "Graded metascreens to enable a new degree of nanoscale light management." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2049 (2015): 20140351. http://dx.doi.org/10.1098/rsta.2014.0351.
Pełny tekst źródłaČtyroký, Jiří, Juan Gonzalo Wangüemert-Pérez, Pavel Kwiecien, et al. "Design of narrowband Bragg spectral filters in subwavelength grating metamaterial waveguides." Optics Express 26, no. 1 (2018): 179. http://dx.doi.org/10.1364/oe.26.000179.
Pełny tekst źródłaPenades, J. Soler, A. Ortega-Moñux, M. Nedeljkovic, et al. "Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding." Optics Express 24, no. 20 (2016): 22908. http://dx.doi.org/10.1364/oe.24.022908.
Pełny tekst źródłaButt, Muhammad Ali. "Numerical investigation of a small footprint plasmonic Bragg grating structure with a high extinction ratio." Photonics Letters of Poland 12, no. 3 (2020): 82. http://dx.doi.org/10.4302/plp.v12i3.1042.
Pełny tekst źródłaHuang, Laixin, Fei Li, Feiyan Cai, et al. "Phononic crystal-induced standing Lamb wave for the translation of subwavelength microparticles." Applied Physics Letters 121, no. 2 (2022): 023505. http://dx.doi.org/10.1063/5.0098468.
Pełny tekst źródłaSánchez-Postigo, Alejandro, Alejandro Ortega-Moñux, Jordi Soler Penadés, et al. "Suspended germanium waveguides with subwavelength-grating metamaterial cladding for the mid-infrared band." Optics Express 29, no. 11 (2021): 16867. http://dx.doi.org/10.1364/oe.422764.
Pełny tekst źródłaChang, Ching-Wen, Xiaochuan Xu, Swapnajit Chakravarty, et al. "Pedestal subwavelength grating metamaterial waveguide ring resonator for ultra-sensitive label-free biosensing." Biosensors and Bioelectronics 141 (September 2019): 111396. http://dx.doi.org/10.1016/j.bios.2019.111396.
Pełny tekst źródłaLourenço, Paulo, Alessandro Fantoni, João Costa, Miguel Fernandes, and Manuela Vieira. "Subwavelength structures for taper waveguides." Journal of Physics: Conference Series 2407, no. 1 (2022): 012040. http://dx.doi.org/10.1088/1742-6596/2407/1/012040.
Pełny tekst źródłaLiu, Jia-Min, and De-Long Zhang. "Ultra-broadband thin-film lithium niobate TM-pass waveguide polarizer using subwavelength grating metamaterial." Optics & Laser Technology 164 (September 2023): 109556. http://dx.doi.org/10.1016/j.optlastec.2023.109556.
Pełny tekst źródłaZhang, Zecen, Jin Zhou, Callum G. Littlejohns, et al. "Mid-Infrared Sensor Based on a Suspended Microracetrack Resonator With Lateral Subwavelength-Grating Metamaterial Cladding." IEEE Photonics Journal 10, no. 2 (2018): 1–8. http://dx.doi.org/10.1109/jphot.2018.2809662.
Pełny tekst źródłaZhang, Chi, Qiang Liu, Xiao Peng, Zhengbiao Ouyang, and Suling Shen. "Sensitive THz sensing based on Fano resonance in all-polymeric Bloch surface wave structure." Nanophotonics 10, no. 15 (2021): 3879–88. http://dx.doi.org/10.1515/nanoph-2021-0339.
Pełny tekst źródłaZhu, Danfeng, Han Ye, Yumin Liu, Jing Li, and Zhongyuan Yu. "High-Contrast and Compact Integrated Wavelength Diplexer Based on Subwavelength Grating Anisotropic Metamaterial for 1550/2000 nm." IEEE Photonics Journal 13, no. 2 (2021): 1–10. http://dx.doi.org/10.1109/jphot.2021.3061966.
Pełny tekst źródłaIftimie, Nicoleta, Rozina Steigmann, Dagmar Faktorova, and Adriana Savin. "Metallic Structures Based on Zinc Oxide Film for Enzyme Biorecognition." Micromachines 13, no. 11 (2022): 1997. http://dx.doi.org/10.3390/mi13111997.
Pełny tekst źródłaButt, Muhammad Ali, and Nikolai Lvovich Kazansky. "SOI Suspended membrane waveguide at 3.39 µm for gas sensing application." Photonics Letters of Poland 12, no. 2 (2020): 67. http://dx.doi.org/10.4302/plp.v12i2.1034.
Pełny tekst źródłaMia, Md Borhan, Nafiz Jaidye, Ishtiaque Ahmed, Syed Ziauddin Ahmed, and Sangsik Kim. "Broadband integrated polarization splitter and rotator using subwavelength grating metamaterials." Optics Express, January 4, 2023. http://dx.doi.org/10.1364/oe.479195.
Pełny tekst źródłaFernández de Cabo, Raquel, Alejandro Sánchez-Sánchez, Yijun Yang, et al. "Broadband mode exchanger based on subwavelength Y-junctions." Nanophotonics, August 7, 2024. http://dx.doi.org/10.1515/nanoph-2024-0291.
Pełny tekst źródłaHuang, Chia-Chih. "Dual subwavelength-grating topology for building polarization beam splitters." Journal of Physics: Photonics, January 14, 2025. https://doi.org/10.1088/2515-7647/adaa41.
Pełny tekst źródłaGuo, Zhenzhao, Shengbao Wu, Yunfeng Lai, and Shuying Cheng. "Ultracompact and Polarization-Independent On-Chip Mode Exchangers Enabled by Subwavelength Grating Metamaterials." Journal of Lightwave Technology, 2024, 1–8. http://dx.doi.org/10.1109/jlt.2024.3451234.
Pełny tekst źródłaKabir, Md Faiyaz, Md Borhan Mia, Ishtiaque Ahmed, Nafiz Jaidye, Syed Z. Ahmed, and Sangsik Kim. "Anisotropic leaky-like perturbation with subwavelength gratings enables zero crosstalk." Light: Science & Applications 12, no. 1 (2023). http://dx.doi.org/10.1038/s41377-023-01184-5.
Pełny tekst źródłaGuo, Zhenzhao, Jinbiao Xiao, and Shengbao Wu. "Experimental demonstration of flexible and high-performance mode-order converter using subwavelength grating metamaterials." Optics Express, March 2, 2023. http://dx.doi.org/10.1364/oe.484384.
Pełny tekst źródłaYu, Qianli, Zhenzhao Guo, Jiabao Zhu, et al. "Ultra-compact and polarization-insensitive silicon waveguide 3×3 star-crossing based on composite subwavelength grating metamaterials." Optics Letters, July 15, 2024. http://dx.doi.org/10.1364/ol.529947.
Pełny tekst źródłaLi, Wanxin, Jiewen Li, Lin Yu, et al. "Observation of Aulter-Townes Splitting in Subwavelength Grating Metamaterial Ring Resonators." APL Photonics, December 8, 2022. http://dx.doi.org/10.1063/5.0122472.
Pełny tekst źródłaFraser, William, Daniel Benedikovic, Radovan Korcek, et al. "High-efficiency self-focusing metamaterial grating coupler in silicon nitride with amorphous silicon overlay." Scientific Reports 14, no. 1 (2024). http://dx.doi.org/10.1038/s41598-024-62336-0.
Pełny tekst źródłaMacKay, Kevan K., Shurui Wang, Pavel Cheben, and Winnie N. Ye. "Subwavelength Grating Metamaterial Multimode Bend for Silicon Waveguides." Advanced Materials Technologies, March 25, 2022, 2200038. http://dx.doi.org/10.1002/admt.202200038.
Pełny tekst źródłaJen, Yi-Jun, Po-Chun Lin, and Xing-Hao Lo. "Silver split nano-tube array as a meta-atomic monolayer for high-reflection band." Scientific Reports 12, no. 1 (2022). http://dx.doi.org/10.1038/s41598-022-17703-0.
Pełny tekst źródła