Gotowa bibliografia na temat „Surrogate dynamics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Surrogate dynamics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Surrogate dynamics"
Varsha D. Vyas. "Investigating the Commercial Surrogacy Sector in Mumbai: Trends, Challenges, and Dynamics." Journal of Information Systems Engineering and Management 10, no. 42s (2025): 1124–37. https://doi.org/10.52783/jisem.v10i42s.8265.
Pełny tekst źródłaHuang, C.-K., Q. Tang, Y. K. Batygin, et al. "Symplectic neural surrogate models for beam dynamics." Journal of Physics: Conference Series 2687, no. 6 (2024): 062026. http://dx.doi.org/10.1088/1742-6596/2687/6/062026.
Pełny tekst źródłaNAKAMURA, TOMOMICHI, and MICHAEL SMALL. "APPLYING THE METHOD OF SMALL–SHUFFLE SURROGATE DATA: TESTING FOR DYNAMICS IN FLUCTUATING DATA WITH TRENDS." International Journal of Bifurcation and Chaos 16, no. 12 (2006): 3581–603. http://dx.doi.org/10.1142/s0218127406016999.
Pełny tekst źródłaKoutsoupakis, Josef, and Dimitrios Giagopoulos. "Drivetrain Response Prediction Using AI-based Surrogate and Multibody Dynamics Model." Machines 11, no. 5 (2023): 514. http://dx.doi.org/10.3390/machines11050514.
Pełny tekst źródłaCharles, Giovanni, Timothy M. Wolock, Peter Winskill, Azra Ghani, Samir Bhatt, and Seth Flaxman. "Seq2Seq Surrogates of Epidemic Models to Facilitate Bayesian Inference." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 12 (2023): 14170–77. http://dx.doi.org/10.1609/aaai.v37i12.26658.
Pełny tekst źródłaXu, Lin, Hongyu Nie, Xiangyang Cheng, Qi Wei, Hongyu Chen, and Jianfeng Tao. "Surrogate Model of Hydraulic Actuator for Active Motion Compensation Hydraulic Crane." Electronics 14, no. 13 (2025): 2678. https://doi.org/10.3390/electronics14132678.
Pełny tekst źródłaChen, Menghui, Xiaoshu Gao, Cheng Chen, Tong Guo, and Weijie Xu. "A Comparative Study of Meta-Modeling for Response Estimation of Stochastic Nonlinear MDOF Systems Using MIMO-NARX Models." Applied Sciences 12, no. 22 (2022): 11553. http://dx.doi.org/10.3390/app122211553.
Pełny tekst źródłaLiu, Shizhong, Ziyao Wang, Jingwen Chen, Rui Xu, and Dong Ming. "The Estimation of Knee Medial Force with Substitution Parameters during Walking and Turning." Sensors 24, no. 17 (2024): 5595. http://dx.doi.org/10.3390/s24175595.
Pełny tekst źródłaGong, Xu, Zhengqi Gu, and Zhenlei Li. "Surrogate model for aerodynamic shape optimization of a tractor-trailer in crosswinds." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 226, no. 10 (2012): 1325–39. http://dx.doi.org/10.1177/0954407012442295.
Pełny tekst źródłaFeng, Yang, Chunfa Zhao, Xin Liang, and Zhan Bai. "SNN-Based Surrogate Modeling of Electromagnetic Force and Its Application in Maglev Vehicle Dynamics Simulation." Actuators 14, no. 3 (2025): 112. https://doi.org/10.3390/act14030112.
Pełny tekst źródłaRozprawy doktorskie na temat "Surrogate dynamics"
Koch, Christiane. "Quantum dissipative dynamics with a surrogate Hamiltonian." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2002. http://dx.doi.org/10.18452/14816.
Pełny tekst źródłaHibbs, Ryan E. "Conformational dynamics of the acetylcholine binding protein, a Nicotinic receptor surrogate." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3237010.
Pełny tekst źródłaConradie, Tanja. "Modelling of nonlinear dynamic systems : using surrogate data methods." Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51834.
Pełny tekst źródłaMillard, Daniel C. "Identification and control of neural circuit dynamics for natural and surrogate inputs in-vivo." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53405.
Pełny tekst źródłaSegee, Molly Catherine. "Surrogate Models for Transonic Aerodynamics for Multidisciplinary Design Optimization." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71321.
Pełny tekst źródłaMinsavage, Kaitlyn Emily. "Neural Networks as Surrogates for Computational Fluid Dynamics Predictions of Hypersonic Flows." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1610017352981371.
Pełny tekst źródłaLagerstrom, Tiffany. "All in the Family: The Role of Sibling Relationships as Surrogate Attachment Figures." Scholarship @ Claremont, 2018. http://scholarship.claremont.edu/scripps_theses/1138.
Pełny tekst źródłaBrouwer, Kirk Rowse. "Enhancement of CFD Surrogate Approaches for Thermo-Structural Response Prediction in High-Speed Flows." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1543340520905498.
Pełny tekst źródłaSadet, Jérémy. "Surrogate models for the analysis of friction induced vibrations under uncertainty." Electronic Thesis or Diss., Valenciennes, Université Polytechnique Hauts-de-France, 2022. http://www.theses.fr/2022UPHF0014.
Pełny tekst źródłaTaheri, Mehdi. "Machine Learning from Computer Simulations with Applications in Rail Vehicle Dynamics and System Identification." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/81417.
Pełny tekst źródłaKsiążki na temat "Surrogate dynamics"
T, Patera Anthony, and Langley Research Center, eds. Surrogates for numerical simulations, optimization of eddy-promoter heat exchanges. National Aeronautics and Space Administration, Langley Research Center, 1993.
Znajdź pełny tekst źródłaRiches, D. Analysis and evaluation of different types of test surrogate employed in the dynamic performance testing of fall-arrest equipment. HSE Books, 2002.
Znajdź pełny tekst źródłaHuffaker, Ray, Marco Bittelli, and Rodolfo Rosa. Entropy and Surrogate Testing. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198782933.003.0005.
Pełny tekst źródłaMajumdar, Anindita. Transnational Commercial Surrogacy and the (Un)Making of Kin in India. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199474363.001.0001.
Pełny tekst źródłaHuffaker, Ray, Marco Bittelli, and Rodolfo Rosa. Data Preprocessing. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198782933.003.0006.
Pełny tekst źródłaMcAuley, Danny F., and Thelma Rose Craig. Measurement of extravascular lung water in the ICU. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0140.
Pełny tekst źródłaCzęści książek na temat "Surrogate dynamics"
Husain, Afzal, and Kwang-Yong Kim. "Optimization of Ribbed Microchannel Heat Sink Using Surrogate Analysis." In Computational Fluid Dynamics 2008. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01273-0_69.
Pełny tekst źródłaParipovic, Jelena, and Patricia Davies. "Characterizing the Dynamics of Systems Incorporating Surrogate Energetic Materials." In Special Topics in Structural Dynamics, Volume 6. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29910-5_10.
Pełny tekst źródłaChiambaretto, Pierre-Louis, Miguel Charlotte, Joseph Morlier, Philippe Villedieu, and Yves Gourinat. "Surrogate Granular Materials for Modal Test of Fluid Filled Tanks." In Special Topics in Structural Dynamics, Volume 6. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29910-5_14.
Pełny tekst źródłaTaflanidis, Alexandros A., Jize Zhang, and Dimitris Patsialis. "Applications of Reduced Order and Surrogate Modeling in Structural Dynamics." In Model Validation and Uncertainty Quantification, Volume 3. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12075-7_35.
Pełny tekst źródłaKůdela, Jakub, and Ladislav Dobrovský. "Performance Comparison of Surrogate-Assisted Evolutionary Algorithms on Computational Fluid Dynamics Problems." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70068-2_19.
Pełny tekst źródłaPapacharalampopoulos, Alexios, Christos Papaioannou, Olga Maria Karagianni, and Panagiotis Stavropoulos. "Towards Explicable AI in Systemic Identification of Surrogate Models of Manufacturing Processes." In Lecture Notes in Mechanical Engineering. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-86489-6_7.
Pełny tekst źródłaSipponen, P., O. Suovaniemi, and M. Härkönen. "The role of pepsinogen assays as surrogate markers of gastritis dynamics in population studies." In Helicobactor pylori. Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-1763-2_12.
Pełny tekst źródłaDenimal, E., L. Nechak, J. J. Sinou, and S. Nacivet. "A New Surrogate Modeling Method Associating Generalized Polynomial Chaos Expansion and Kriging for Mechanical Systems Subjected to Friction-Induced Vibration." In Special Topics in Structural Dynamics, Volume 6. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53841-9_2.
Pełny tekst źródłaMorales, Xabier, Jordi Mill, Kristine A. Juhl, et al. "Deep Learning Surrogate of Computational Fluid Dynamics for Thrombus Formation Risk in the Left Atrial Appendage." In Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39074-7_17.
Pełny tekst źródłaAumann, Quirin, Peter Benner, Jens Saak, and Julia Vettermann. "Model Order Reduction Strategies for the Computation of Compact Machine Tool Models." In Lecture Notes in Production Engineering. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34486-2_10.
Pełny tekst źródłaStreszczenia konferencji na temat "Surrogate dynamics"
Alfaham, Abdallah, and Siegfried Mercelis. "Artificial Surrogate Model for Computational Fluid Dynamics." In ESANN 2025. Ciaco - i6doc.com, 2025. https://doi.org/10.14428/esann/2025.es2025-70.
Pełny tekst źródłaLENGEL, RUSSELL, and JEFFREY LINDER. "The use of rubidium as a surrogate for potassium in combustion system imaging." In 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference. American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1547.
Pełny tekst źródłaBoopathy, Komahan, and Markus P. Rumpfkeil. "A Multivariate Interpolation and Regression Enhanced Kriging Surrogate Model." In 21st AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-2964.
Pełny tekst źródłaChoze, Sergio, and Felipe A. Viana. "Simple and inexpensive algorithm for surrogate filtering." In 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-0139.
Pełny tekst źródłaBeyhaghi, Pooriya, Daniele Cavaglieri, and Thomas Bewley. "Delaunay-based Derivative-free Optimization via Global Surrogate, Part 1: Theory." In 21st AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-2707.
Pełny tekst źródłaLeifsson, Leifur, and Slawomir Koziel. "Surrogate-Based Shape Optimization of Low-Speed Wind Tunnel Contractions." In 42nd AIAA Fluid Dynamics Conference and Exhibit. American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-3344.
Pełny tekst źródłaTrizila, Patrick, Chang-Kwon Kang, Miguel Visbal, and Wei Shyy. "Unsteady Fluid Physics and Surrogate Modeling of Low Reynolds Number, Flapping Airfoils." In 38th Fluid Dynamics Conference and Exhibit. American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-3821.
Pełny tekst źródłaPark, Chanyoung, Raphael T. Haftka, and Nam Ho Kim. "Simple Alternative to Bayesian Multi-Fidelity Surrogate Framework." In 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-0135.
Pełny tekst źródłaChowdhury, Souma, Ali Mehmani, Weiyang Tong, and Achille Messac. "Adaptive Model Refinement in Surrogate-based Multiobjective Optimization." In 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-0417.
Pełny tekst źródłaPyle, James, Mozhgan Kabiri Chimeh, and Paul Richmond. "Surrogate Modelling for Efficient Discovery of Emergent Population Dynamics." In 2019 International Conference on High Performance Computing & Simulation (HPCS). IEEE, 2019. http://dx.doi.org/10.1109/hpcs48598.2019.9188208.
Pełny tekst źródłaRaporty organizacyjne na temat "Surrogate dynamics"
Meidani, Hadi, and Amir Kazemi. Data-Driven Computational Fluid Dynamics Model for Predicting Drag Forces on Truck Platoons. Illinois Center for Transportation, 2021. http://dx.doi.org/10.36501/0197-9191/21-036.
Pełny tekst źródłaElliott, J. Hydra modeling of experiments to study ICF capsule fill hole dynamics using surrogate targets. Office of Scientific and Technical Information (OSTI), 2007. http://dx.doi.org/10.2172/925990.
Pełny tekst źródłaTorres, Marissa, Michael-Angelo Lam, and Matt Malej. Practical guidance for numerical modeling in FUNWAVE-TVD. Engineer Research and Development Center (U.S.), 2022. http://dx.doi.org/10.21079/11681/45641.
Pełny tekst źródłaHarris and Edlund. L51766 Instantaneous Rotational Velocity Development. Pipeline Research Council International, Inc. (PRCI), 1997. http://dx.doi.org/10.55274/r0010119.
Pełny tekst źródłaFlanagan Pritz, Colleen, Colleen Emery, Branden Johnson, et al. Sampling dragonflies for mercury analysis in Grand Canyon National Park, 2018–2024: A contribution of the Dragonfly Mercury Project. National Park Service, 2025. https://doi.org/10.36967/2310449.
Pełny tekst źródłaBailey Bond, Robert, Pu Ren, James Fong, Hao Sun, and Jerome F. Hajjar. Physics-informed Machine Learning Framework for Seismic Fragility Analysis of Steel Structures. Northeastern University, 2024. http://dx.doi.org/10.17760/d20680141.
Pełny tekst źródła