Artykuły w czasopismach na temat „Symbolic Chemistry Learning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Symbolic Chemistry Learning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Mujakir, Mujakir, Yenni Kurniawati, Safrijal Djamaluddin, and Nur Jahan Ahmad. "Design of Innovative Non-Routine Learning Strategies in Chemistry Learning." JTK (Jurnal Tadris Kimiya) 9, no. 2 (2024): 182–90. https://doi.org/10.15575/jtk.v9i2.38029.
Pełny tekst źródłaZielinski, Theresa Julia. "Learning That Prepares for More Learning: Symbolic Mathematics in Physical Chemistry." Journal of Chemical Education 81, no. 4 (2004): 605. http://dx.doi.org/10.1021/ed081p605.
Pełny tekst źródłaRizal, Wiji, Tuszie Widhiyanti, and Novianti Islahiah. "Multi-representation Analysis of General Chemistry Books on Chemical Bonding Subject." Orbital: Jurnal Pendidikan Kimia 8, no. 1 (2024): 61–70. http://dx.doi.org/10.19109/ojpk.v8i1.21609.
Pełny tekst źródłaZulhendra, Zulhendra. "Learning Media of PPT-iSpring with Macroscopic, Submicroscopic and Symbolic Representations for Improvement of Chemistry Teacher Competency." Pelita Eksakta 5, no. 1 (2022): 23. http://dx.doi.org/10.24036/pelitaeksakta/vol5-iss1/166.
Pełny tekst źródłaWang, Lu, Georgia Hodges, and Juyeon Lee. "Connecting Macroscopic, Molecular, and Symbolic Representations with Immersive Technologies in High School Chemistry: The Case of Redox Reactions." Education Sciences 12, no. 7 (2022): 428. http://dx.doi.org/10.3390/educsci12070428.
Pełny tekst źródłaWicaksono, Anggit Grahito. "Johnstone's Levels of Representation in Science Learning." SPEKTRA: Jurnal Kajian Pendidikan Sains 8, no. 1 (2022): 19. http://dx.doi.org/10.32699/spektra.v8i1.224.
Pełny tekst źródłaWicaksono, Anggit Grahito. "Johnstone's Levels of Representation in Science Learning." SPEKTRA: Jurnal Kajian Pendidikan Sains 8, no. 1 (2022): 19. http://dx.doi.org/10.32699/spektra.v8i1.224.
Pełny tekst źródłaZielinski, Theresa Julia. "Using Symbolic Software to Facilitate Learning." Journal of Chemical Education 78, no. 2 (2001): 270. http://dx.doi.org/10.1021/ed078p270.
Pełny tekst źródłaLiu, Yu, and Keith S. Taber. "Analysing symbolic expressions in secondary school chemistry: their functions and implications for pedagogy." Chemistry Education Research and Practice 17, no. 3 (2016): 439–51. http://dx.doi.org/10.1039/c6rp00013d.
Pełny tekst źródłaSanchez, Joje Mar P. "Integrated Macro-Micro-Symbolic Approach in Teaching Secondary Chemistry." KIMIKA 28, no. 2 (2017): 22–29. http://dx.doi.org/10.26534/kimika.v28i2.22-29.
Pełny tekst źródłaAhmar, Dewi Satria, Muhammad Fath Azzajjad, and Muh Syahrir. "Students’ Representation Ability in Chemistry." Journal of Applied Science, Engineering, Technology, and Education 2, no. 2 (2020): 181–87. http://dx.doi.org/10.35877/454ri.asci22124.
Pełny tekst źródłaSchwedler, Stefanie, and Marvin Kaldewey. "Linking the submicroscopic and symbolic level in physical chemistry: how voluntary simulation-based learning activities foster first-year university students’ conceptual understanding." Chemistry Education Research and Practice 21, no. 4 (2020): 1132–47. http://dx.doi.org/10.1039/c9rp00211a.
Pełny tekst źródłaIbrahim, Mokhzani, and Nurul Atikah Mohd Badli. "STEM in chemistry." LUMAT: International Journal on Math, Science and Technology Education 12, no. 4 (2025): 4. https://doi.org/10.31129/lumat.12.4.2445.
Pełny tekst źródłaGabel, Dorothy. "Theory-Based Teaching Strategies for Conceptual Understanding of Chemistry." Educación Química 11, no. 2 (2018): 236. http://dx.doi.org/10.22201/fq.18708404e.2000.2.66459.
Pełny tekst źródłaSibananda, Sana, and Chandan Adhikary Dr. "MICRO AND MACRO LEVEL PHENOMENA IN CHEMISTRY: LEARNING DIFFICULTIES, DEFICIENCIES AND REMEDIAL MEASURES." International Journal of Current Research and Modern Education 2, no. 1 (2017): 197–201. https://doi.org/10.5281/zenodo.810129.
Pełny tekst źródłaRidhani, Jovita, Sari Trisnaningsih, and Ika Nur Fitriani. "Visual Representations in Indonesian Chemistry Textbooks: Supporting Deep Learning for 2025 Educational Goals." Indonesian Journal of Instructional Media and Model 7, no. 1 (2025): 33–49. https://doi.org/10.32585/ijimm.v7i1.6438.
Pełny tekst źródłaDwiningsih, Kusumawati, and Nurlaily Yulia Safitri. "Development Interactive Multimedia Using 3D Virtual Modelling on Intermolecular Forces Matter." International Journal of Chemistry Education Research 3, no. 3 (2020): 17–25. http://dx.doi.org/10.20885/ijcer.vol4.iss1.art3.
Pełny tekst źródłaSaeed Aledressi, Alaa Ameen Muhammad, Marla Ma'firah, Yosi Juwita Erman, Ifan Rivaldo, and Nurhawilis Nurhawilis. "The Development of E-Learning Chemistry Learning for SMA / MA based on Project Based Learning on Quantum Number Material with the Flipped Classroom Approach in Class X Senior High School." INTERNATIONAL JOURNAL OF HIGH INFORMATION, COMPUTERIZATION, ENGINEERING AND APPLIED SCIENCE (JHICE) 1, no. 02 (2021): 74–83. http://dx.doi.org/10.24036/jhice/vol1-iss02/33.
Pełny tekst źródłaZielinski, Theresa Julia. "Fostering Creativity and Learning Using Instructional Symbolic Mathematics Documents." Journal of Chemical Education 86, no. 12 (2009): 1466. http://dx.doi.org/10.1021/ed086p1466.
Pełny tekst źródłaShmalko, Elizaveta, and Askhat Diveev. "Control Synthesis as Machine Learning Control by Symbolic Regression Methods." Applied Sciences 11, no. 12 (2021): 5468. http://dx.doi.org/10.3390/app11125468.
Pełny tekst źródłaBecker, Nicole, Courtney Stanford, Marcy Towns, and Renee Cole. "Translating across macroscopic, submicroscopic, and symbolic levels: the role of instructor facilitation in an inquiry-oriented physical chemistry class." Chemistry Education Research and Practice 16, no. 4 (2015): 769–85. http://dx.doi.org/10.1039/c5rp00064e.
Pełny tekst źródłaEdwards, Nazeem, and Lize Maree. "A comparison between preservice science teachers’ representational competence and fluency in chemistry and physics." Journal of Turkish Science Education 22, no. 2 (2025): 300–317. https://doi.org/10.36681/tused.2025.015.
Pełny tekst źródłaSiregar,, Rabiyatul Adawiyah, Sun Theo Constan Lotebulo Ndruru, Armansyah Lubis, Ali Akbar Siregar, and Nurhijriyah Kam Siregar. "Scientific, inquiry, and animation integration: The IPSIA learning model in chemistry." Jurnal Pendidikan Kimia 16, no. 3 (2024): 302–10. https://doi.org/10.24114/jpkim.v16i3.63566.
Pełny tekst źródłaRahmawati, Yuli, Zulhipri Zulhipri, Octaviano Hartanto, Ilham Falani, and Deni Iriyadi. "Students’ conceptual understanding in chemistry learning using PhET interactive simulations." Journal of Technology and Science Education 12, no. 2 (2022): 303. http://dx.doi.org/10.3926/jotse.1597.
Pełny tekst źródłaEilks, Ingo, Torsten Witteck, and Verena Pietzner. "The Role and Potential Dangers of Visualisation when Learning about Sub-Microscopic Explanations in Chemistry Education." Center for Educational Policy Studies Journal 2, no. 1 (2018): 125–45. http://dx.doi.org/10.26529/cepsj.398.
Pełny tekst źródłaDjoa, Dominikus Djago, Sunyono Sunyono, Albet Maydiantoro, and Tubagus Ali Rachman Puja Kesuma. "The eXe Learning as a Solution to the Problem of the Three Phenomena of Chemistry Learning Stages : A Literature Review." International Journal of Education and Information Technologies 15 (July 20, 2021): 167–75. http://dx.doi.org/10.46300/9109.2021.15.17.
Pełny tekst źródłaProkša, Miroslav, Anna Drozdíková, and Zuzana Haláková. "Verifying the Weight of Different Learning Tasks in Student Assessment by Chemistry Teachers." Chemistry-Didactics-Ecology-Metrology 24, no. 1-2 (2019): 89–97. http://dx.doi.org/10.2478/cdem-2019-0007.
Pełny tekst źródłaHerunata, Herunata, Putri Nanda Fauziah, Fisky Ayudya Citra Pramudita, and Shella Natasya. "Analysis of Concepts and Propositions through Multi-Representation Based Inquiry Learning on Colligative Properties." JCER (Journal of Chemistry Education Research) 8, no. 1 (2024): 41–53. http://dx.doi.org/10.26740/jcer.v8n1.p41-53.
Pełny tekst źródłaMcCollum, Brett, Layne Morsch, Chantz Pinder, Isaiah Ripley, Darlene Skagen, and Michael Wentzel. "Multi-dimensional trust between partners for international online collaborative learning in the Third Space." International Journal for Students as Partners 3, no. 1 (2019): 50–59. http://dx.doi.org/10.15173/ijsap.v3i1.3730.
Pełny tekst źródłaAgustina, Nur Indah, Munzil Munzil, Habiddin Habiddin, and M. Muchson. "Development of Guided Inquiry based E-Learning Teaching Material on the Intermolecular Forces Enriched with Molview." Journal of Disruptive Learning Innovation (JODLI) 2, no. 2 (2021): 80. http://dx.doi.org/10.17977/um072v2i22021p80-88.
Pełny tekst źródłaKhaeruman, Khaeruman, and Hulyadi Hulyadi. "DEVELOPING INTERACTIVE FUNDAMENTAL CHEMISTRY MULTIMEDIA IN GROWING GENERIC SKILL FOR TEACHER TRAINING STUDENTS." Hydrogen: Jurnal Kependidikan Kimia 4, no. 1 (2016): 48. http://dx.doi.org/10.33394/hjkk.v4i1.46.
Pełny tekst źródłaEliyawati, Eliyawati, Rika Rafikah Agustin, Yustika Sya’bandari, and Rossy Andini Herindra Putri. "Smartchem: An Android Application for Learning Multiple Representations of Acid-Base Chemistry." Journal of Science Learning 3, no. 3 (2020): 196–204. http://dx.doi.org/10.17509/jsl.v3i3.23280.
Pełny tekst źródłaFerk-Savec, Vesna, Bernarda Urankar, Maija Aksela, and Iztok Devetak. "Prospective chemistry teachers’ perceptions of their profession: The state of the art in Slovenia and Finland." Journal of the Serbian Chemical Society 82, no. 10 (2017): 1193–210. http://dx.doi.org/10.2298/jsc161221083s.
Pełny tekst źródłaChen, Xiaoge, Luciane de Goes, David Treagust, and Ingo Eilks. "An Analysis of the Visual Representation of Redox Reactions in Secondary Chemistry Textbooks from Different Chinese Communities." Education Sciences 9, no. 1 (2019): 42. http://dx.doi.org/10.3390/educsci9010042.
Pełny tekst źródłaOpona, Abegail Joyce, Joje Mar Sanchez, and Kim Bondoc. "Use of Multiple Representations in Online General Chemistry Class: Promoting Chemical Understanding during the Covid-19 Pandemic." KIMIKA 33, no. 2 (2022): 21–33. http://dx.doi.org/10.26534/kimika.v33i2.21-33.
Pełny tekst źródłaWidarti, Hayuni Retno, Ana Permanasari, and Sri Mulyani. "UNDERGRADUATE STUDENTS’ MISCONCEPTION ON ACID-BASE AND ARGENTOMETRIC TITRATIONS: A CHALLENGE TO IMPLEMENT MULTIPLE REPRESENTATION LEARNING MODEL WITH COGNITIVE DISSONANCE STRATEGY." International Journal of Education 9, no. 2 (2017): 105. http://dx.doi.org/10.17509/ije.v9i2.5464.
Pełny tekst źródłaAprille, Kaye O. Jaranilla, and Jade Q. Orongan Maris. "Symbolic Representation Approach on Students' Academic Performance and Portfolio in Science 10 via Modular Learning Modality." Symbolic Representation Approach on Students' Academic Performance and Portfolio in Science 10 via Modular Learning Modality 8, no. 10 (2023): 11. https://doi.org/10.5281/zenodo.10029936.
Pełny tekst źródłaMawardi, Mawardi, Zonalia Fitriza, and Okta Suryani. "Development of E-Learning Teaching Materials Based on Guided Inquiry Learning Models and Camtasia Applications to Support Post-COVID-19 Online Learning for Chemistry Teachers in SMA / MA." Pelita Eksakta 4, no. 1 (2021): 77. http://dx.doi.org/10.24036/pelitaeksakta/vol4-iss1/146.
Pełny tekst źródłaCelestino, Teresa. "Aniline and Beyond: A Multifaceted Case Study for a Bildung-Focused Chemical Education." Organics 6, no. 2 (2025): 20. https://doi.org/10.3390/org6020020.
Pełny tekst źródłaSlapničar, Miha, Valerija Tompa, Saša A. Glažar, and Iztok Devetak. "FOURTEEN-YEAR-OLD STUDENTS' MISCONCEPTIONS REGARDING THE SUB-MICRO AND SYMBOLIC LEVELS OF SPECIFIC CHEMICAL CONCEPTS." Journal of Baltic Science Education 17, no. 4 (2018): 620–32. http://dx.doi.org/10.33225/jbse/18.17.620.
Pełny tekst źródłaZou, Jia, Xiaokai Zhang, Yiming He, Na Zhu, and Tuo Leng. "FGeo-DRL: Deductive Reasoning for Geometric Problems through Deep Reinforcement Learning." Symmetry 16, no. 4 (2024): 437. http://dx.doi.org/10.3390/sym16040437.
Pełny tekst źródłaPradani, Nevia, Munzil Munzil, and M. Muchson. "Development of Guided Inquiry Based Learning Materials Enriched with Augmented Reality in Electrolysis Cell Material." International Journal of Interactive Mobile Technologies (iJIM) 14, no. 12 (2020): 4. http://dx.doi.org/10.3991/ijim.v14i12.15597.
Pełny tekst źródłaIndriyanti, Nurma Yunita, Sulistyo Saputro, and Rizki Lukman Sungkar. "PROBLEM-SOLVING AND PROBLEM-POSING LEARNING MODEL ENRICHED WITH THE MULTIPLE REPRESENTATION IN TETRAHEDRAL CHEMISTRY TO ENHANCE STUDENTS’ CONCEPTUAL UNDERSTANDING." EDUSAINS 12, no. 1 (2020): 123–34. http://dx.doi.org/10.15408/es.v12i1.13282.
Pełny tekst źródłaEnero Upahi, Johnson, and Umesh Ramnarain. "Representations of chemical phenomena in secondary school chemistry textbooks." Chemistry Education Research and Practice 20, no. 1 (2019): 146–59. http://dx.doi.org/10.1039/c8rp00191j.
Pełny tekst źródłaMusva, Nurul Lestari, Maria Erna, and Abdullah Abdullah. "The Effectiveness of Problem-Based Flipped Classroom Model in Improving Chemistry Learning Outcomes of Buffer Solution." Hydrogen: Jurnal Kependidikan Kimia 11, no. 1 (2023): 34. http://dx.doi.org/10.33394/hjkk.v11i1.6213.
Pełny tekst źródłaAmalia, F. R., S. Ibnu, H. R. Widarti, and H. Wuni. "Students’ Mental Models of Acid and Base Concepts Taught Using Cognitive Apprenticeship Learning Model." Jurnal Pendidikan IPA Indonesia 7, no. 2 (2018): 187–92. http://dx.doi.org/10.15294/jpii.v7i2.14264.
Pełny tekst źródłaYe, Jianqiang, Shanshan Lu, and Hualin Bi. "The effects of microcomputer-based laboratories on students macro, micro, and symbolic representations when learning about net ionic reactions." Chemistry Education Research and Practice 20, no. 1 (2019): 288–301. http://dx.doi.org/10.1039/c8rp00165k.
Pełny tekst źródłaAlmubarak, Almubarak, and Parham Saadi. "Validity, Practicality, Effectiveness: Wetland Contexted-Chemical Representation Module as a Media for Learning." Journal of Mathematics Science and Computer Education 2, no. 1 (2022): 56. http://dx.doi.org/10.20527/jmscedu.v2i1.5067.
Pełny tekst źródłaHidayati, Hidayati. "The Development of Structured Inquiry with three-Level Representation Module." JKPK (Jurnal Kimia dan Pendidikan Kimia) 6, no. 2 (2021): 228. http://dx.doi.org/10.20961/jkpk.v6i2.53945.
Pełny tekst źródłaIschak, Netty Ino, Eka Anggraini Odja, Jafar La Kilo, and Akram La Kilo. "Pengaruh Keterampilan Proses Sains Melalui Model Inkuiri Terbimbing terhadap Hasil Belajar Siswa pada Materi Larutan Asam Basa." Hydrogen: Jurnal Kependidikan Kimia 8, no. 2 (2020): 58. http://dx.doi.org/10.33394/hjkk.v8i2.2748.
Pełny tekst źródła