Spis treści
Gotowa bibliografia na temat „Synergistic regularization”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Synergistic regularization”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Synergistic regularization"
Cueva, Evelyn, Alexander Meaney, Samuli Siltanen i Matthias J. Ehrhardt. "Synergistic multi-spectral CT reconstruction with directional total variation". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, nr 2204 (5.07.2021): 20200198. http://dx.doi.org/10.1098/rsta.2020.0198.
Pełny tekst źródłaMehranian, Abolfazl, Martin A. Belzunce, Claudia Prieto, Alexander Hammers i Andrew J. Reader. "Synergistic PET and SENSE MR Image Reconstruction Using Joint Sparsity Regularization". IEEE Transactions on Medical Imaging 37, nr 1 (styczeń 2018): 20–34. http://dx.doi.org/10.1109/tmi.2017.2691044.
Pełny tekst źródłaPerelli, Alessandro, i Martin S. Andersen. "Regularization by denoising sub-sampled Newton method for spectral CT multi-material decomposition". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, nr 2200 (10.05.2021): 20200191. http://dx.doi.org/10.1098/rsta.2020.0191.
Pełny tekst źródłaJørgensen, J. S., E. Ametova, G. Burca, G. Fardell, E. Papoutsellis, E. Pasca, K. Thielemans i in. "Core Imaging Library - Part I: a versatile Python framework for tomographic imaging". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, nr 2204 (5.07.2021): 20200192. http://dx.doi.org/10.1098/rsta.2020.0192.
Pełny tekst źródłaBahadur, Rabya, Saeed ur Rehman, Ghulam Rasool i Muhammad AU Khan. "Synergy Estimation Method for Simultaneous Activation of Multiple DOFs Using Surface EMG Signals". NUST Journal of Engineering Sciences 14, nr 2 (31.01.2022): 66–73. http://dx.doi.org/10.24949/njes.v14i2.661.
Pełny tekst źródłaZhong, Lihua, Tong Ye, Yuyao Yang, Feng Pan, Lei Feng, Shuzhe Qi i Yuping Huang. "Deep Reinforcement Learning-Based Joint Low-Carbon Optimization for User-Side Shared Energy Storage–Distribution Networks". Processes 12, nr 9 (23.08.2024): 1791. http://dx.doi.org/10.3390/pr12091791.
Pełny tekst źródłaDu, Lehui, Baolin Qu, Fang Liu, Na Ma, Shouping Xu, Wei Yu, Xiangkun Dai i Xiang Huang. "Precise prediction of the radiation pneumonitis with RPI: An explorative preliminary mathematical model using genotype information." Journal of Clinical Oncology 37, nr 15_suppl (20.05.2019): e14569-e14569. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e14569.
Pełny tekst źródłaDi Sciacca, G., L. Di Sieno, A. Farina, P. Lanka, E. Venturini, P. Panizza, A. Dalla Mora, A. Pifferi, P. Taroni i S. R. Arridge. "Enhanced diffuse optical tomographic reconstruction using concurrent ultrasound information". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, nr 2204 (5.07.2021): 20200195. http://dx.doi.org/10.1098/rsta.2020.0195.
Pełny tekst źródłaLu, Yifan, Ziqi Zhang, Chunfeng Yuan, Peng Li, Yan Wang, Bing Li i Weiming Hu. "Set Prediction Guided by Semantic Concepts for Diverse Video Captioning". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 4 (24.03.2024): 3909–17. http://dx.doi.org/10.1609/aaai.v38i4.28183.
Pełny tekst źródłaAnacleto, Adilson, Karina Beatriz dos Santos Ferreira da Rocha, Raíssa Leal Calliari, Maike dos Santos i Sandro Deretti. "Production Arrangement of Cachaça: Comparative Study Between Morretes in the Paraná Coast and Luiz Alves in Itajaí Valley - Santa Catarina". Revista de Gestão Social e Ambiental 18, nr 2 (26.06.2024): e07510. http://dx.doi.org/10.24857/rgsa.v18n2-158.
Pełny tekst źródłaRozprawy doktorskie na temat "Synergistic regularization"
Wang, Zhihan. "Reconstruction des images médicales de tomodensitométrie spectrale par apprentissage profond". Electronic Thesis or Diss., Brest, 2024. http://www.theses.fr/2024BRES0124.
Pełny tekst źródłaComputed tomography (CT), a cornerstone of diagnostic imaging, focuses on two contemporary topics: radiation dose reduction and multi-energy imaging, which are inherently interconnected. As an emerging advancement, spectral CT can capture data across a range of X-ray energies for bettermaterial differentiation, reducing the need for repeat scans and thereby lowering overall radiationexposure. However, the reduced photon count in each energy bin makes traditional reconstruction methods susceptible to noise. Therefore, deep learning (DL) techniques, which have shown great promise in medical imaging, are being considered. This thesis introduces a novel regularizationterm that incorporates convolutional neural networks (CNNs) to connect energy bins to a latent variable, leveraging all binned data for synergistic reconstruction. As a proof-of concept, we propose Uconnect and its variant MHUconnect, employing U-Nets and the multi-head U-Net, respectively, as the CNNs, with images at a specific energy bin serving as the latent variable for supervised learning.The two methods are validated to outperform several existing approaches in reconstruction and denoising tasks