Artykuły w czasopismach na temat „Tanyctes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Tanyctes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Yoo, Sooyeon, Juhyun Kim, Pin Lyu, et al. "Control of neurogenic competence in mammalian hypothalamic tanycytes." Science Advances 7, no. 22 (2021): eabg3777. http://dx.doi.org/10.1126/sciadv.abg3777.
Pełny tekst źródłaWittmann, Gabor, Surbhi Gahlot, Malcolm James Low, and Ronald M. Lechan. "Rax Expression Identifies a Novel Cell Type in the Adult Mouse Hypothalamus." Journal of the Endocrine Society 5, Supplement_1 (2021): A42. http://dx.doi.org/10.1210/jendso/bvab048.082.
Pełny tekst źródłaBolborea, Matei, Marie-Pierre Laran-Chich, Kamontip Rasri, et al. "Melatonin Controls Photoperiodic Changes in Tanycyte Vimentin and Neural Cell Adhesion Molecule Expression in the Djungarian Hamster (Phodopus sungorus)." Endocrinology 152, no. 10 (2011): 3871–83. http://dx.doi.org/10.1210/en.2011-1039.
Pełny tekst źródłade Vries, E. M., J. Kwakkel, L. Eggels та ін. "NFκB Signaling Is Essential for the Lipopolysaccharide-Induced Increase of Type 2 Deiodinase in Tanycytes". Endocrinology 155, № 5 (2014): 2000–2008. http://dx.doi.org/10.1210/en.2013-2018.
Pełny tekst źródłaJawad, Haider, Muthanna Al-Kaabi, and Anam Al-Salihi. "IMMUNOHISTOCHEMICAL EXPRESSION OF MONOCARBOXYLATE TRANSPORTER 1&4 IN TANYCYTE–LIKE CELLS OF THE SULCUS MEDIANUS ORGANUM." Iraqi Journal of Medical Sciences 17, no. 1 (2019): 83–99. http://dx.doi.org/10.22578/ijms.17.1.12.
Pełny tekst źródłade Seranno, Sandrine, Xavier d'Anglemont de Tassigny, Cecilia Estrella, et al. "Role of Estradiol in the Dynamic Control of Tanycyte Plasticity Mediated by Vascular Endothelial Cells in the Median Eminence." Endocrinology 151, no. 4 (2010): 1760–72. http://dx.doi.org/10.1210/en.2009-0870.
Pełny tekst źródłaBolborea, Matei, Gisela Helfer, Francis J. P. Ebling, and Perry Barrett. "Dual signal transduction pathways activated by TSH receptors in rat primary tanycyte cultures." Journal of Molecular Endocrinology 54, no. 3 (2015): 241–50. http://dx.doi.org/10.1530/jme-14-0298.
Pełny tekst źródłaSánchez, Edith, Praful S. Singru, Gábor Wittmann та ін. "Contribution of TNF-α and Nuclear Factor-κB Signaling to Type 2 Iodothyronine Deiodinase Activation in the Mediobasal Hypothalamus after Lipopolysaccharide Administration". Endocrinology 151, № 8 (2010): 3827–35. http://dx.doi.org/10.1210/en.2010-0279.
Pełny tekst źródłaPorniece Kumar, Marta, Anna Lena Cremer, Paul Klemm, et al. "Insulin signalling in tanycytes gates hypothalamic insulin uptake and regulation of AgRP neuron activity." Nature Metabolism 3, no. 12 (2021): 1662–79. http://dx.doi.org/10.1038/s42255-021-00499-0.
Pełny tekst źródłaRafiei, Parisa, Huda S. Mian, Shruthi H. Iyer, et al. "In Preclinical Epilepsy, GLUT1 and GFAP Dysregulation in Cells Surrounding the Third Ventricle, Including Tanycytes, Is Differentially Restored with Ketogenic Diet Treatment." Nutrients 17, no. 11 (2025): 1824. https://doi.org/10.3390/nu17111824.
Pełny tekst źródłaBarrett, Perry, Elena Ivanova, E. Scott Graham, et al. "Photoperiodic regulation of cellular retinoic acid-binding protein 1, GPR50 and nestin in tanycytes of the third ventricle ependymal layer of the Siberian hamster." Journal of Endocrinology 191, no. 3 (2006): 687–98. http://dx.doi.org/10.1677/joe.1.06929.
Pełny tekst źródłaSchlagal, Caitlin R., and Ping Wu. "Alcohol and Cocaine Combined Substance Use on Adult Hypothalamic Neural Stem Cells and Neurogenesis." Brain Plasticity 6, no. 1 (2020): 41–46. http://dx.doi.org/10.3233/bpl-190091.
Pełny tekst źródłaMarsili, Alessandro, Edith Sanchez, Praful Singru, et al. "Thyroxine-induced expression of pyroglutamyl peptidase II and inhibition of TSH release precedes suppression of TRH mRNA and requires type 2 deiodinase." Journal of Endocrinology 211, no. 1 (2011): 73–78. http://dx.doi.org/10.1530/joe-11-0248.
Pełny tekst źródłaCeriani, Ricardo, and Kathleen E. Whitlock. "Gonadotropin Releasing Hormone (GnRH) Triggers Neurogenesis in the Hypothalamus of Adult Zebrafish." International Journal of Molecular Sciences 22, no. 11 (2021): 5926. http://dx.doi.org/10.3390/ijms22115926.
Pełny tekst źródłaMurphy, Michelle, and Francis J. P. Ebling. "The Role of Hypothalamic Tri-Iodothyronine Availability in Seasonal Regulation of Energy Balance and Body Weight." Journal of Thyroid Research 2011 (2011): 1–7. http://dx.doi.org/10.4061/2011/387562.
Pełny tekst źródłaLewis, Jo E., John M. Brameld, Phil Hill, et al. "Thyroid hormone and vitamin D regulate VGF expression and promoter activity." Journal of Molecular Endocrinology 56, no. 2 (2015): 123–34. http://dx.doi.org/10.1530/jme-15-0224.
Pełny tekst źródłaSánchez, Edith, Miguel Angel Vargas, Praful S. Singru, et al. "Tanycyte Pyroglutamyl Peptidase II Contributes to Regulation of the Hypothalamic-Pituitary-Thyroid Axis through Glial-Axonal Associations in the Median Eminence." Endocrinology 150, no. 5 (2009): 2283–91. http://dx.doi.org/10.1210/en.2008-1643.
Pełny tekst źródłaBolborea, Matei, Eric Pollatzek, Heather Benford, Tamara Sotelo-Hitschfeld, and Nicholas Dale. "Hypothalamic tanycytes generate acute hyperphagia through activation of the arcuate neuronal network." Proceedings of the National Academy of Sciences 117, no. 25 (2020): 14473–81. http://dx.doi.org/10.1073/pnas.1919887117.
Pełny tekst źródłaSáenz de Miera, Cristina, Béatrice Bothorel, Catherine Jaeger, Valérie Simonneaux, and David Hazlerigg. "Maternal photoperiod programs hypothalamic thyroid status via the fetal pituitary gland." Proceedings of the National Academy of Sciences 114, no. 31 (2017): 8408–13. http://dx.doi.org/10.1073/pnas.1702943114.
Pełny tekst źródłaBalland, Églantine, and Vincent Prévot. "Les tanycytes hypothalamiques." médecine/sciences 30, no. 6-7 (2014): 624–27. http://dx.doi.org/10.1051/medsci/20143006009.
Pełny tekst źródłaEgri, P., C. Fekete, Á. Dénes, et al. "Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Regulates the Hypothalamo-Pituitary-Thyroid (HPT) Axis via Type 2 Deiodinase in Male Mice." Endocrinology 157, no. 6 (2016): 2356–66. http://dx.doi.org/10.1210/en.2016-1043.
Pełny tekst źródłaRodríguez-Rodríguez, Adair, Rosa María Uribe, Antonieta Cote-Vélez, Patricia Joseph-Bravo, and Jean-Louis Charli. "Hypothalamic Median Eminence Thyrotropin-Releasing Hormone-Degrading Ectoenzyme Activity Is Dispensable for Basal Thyroid Axis Activity in Lean Rodents." Cells 14, no. 10 (2025): 725. https://doi.org/10.3390/cells14100725.
Pełny tekst źródłaMüller-Fielitz, Helge, and Markus Schwaninger. "The Role of Tanycytes in the Hypothalamus-Pituitary-Thyroid Axis and the Possibilities for Their Genetic Manipulation." Experimental and Clinical Endocrinology & Diabetes 128, no. 06/07 (2019): 388–94. http://dx.doi.org/10.1055/a-1065-1855.
Pełny tekst źródłaEbling, Francis J. P., and Ricardo Samms. "Txnip, Tanycytes, and Torpor." Endocrinology 154, no. 6 (2013): 1970–72. http://dx.doi.org/10.1210/en.2013-1390.
Pełny tekst źródłaOsterstock, Guillaume, Taoufik El Yandouzi, Nicola Romanò, et al. "Sustained Alterations of Hypothalamic Tanycytes During Posttraumatic Hypopituitarism in Male Mice." Endocrinology 155, no. 5 (2014): 1887–98. http://dx.doi.org/10.1210/en.2013-1336.
Pełny tekst źródłaPrager-Khoutorsky, Masha, and Charles W. Bourque. "Anatomical organization of the rat organum vasculosum laminae terminalis." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 309, no. 4 (2015): R324—R337. http://dx.doi.org/10.1152/ajpregu.00134.2015.
Pełny tekst źródłaSullivan, Andrew I., Matthew J. Potthoff, and Kyle H. Flippo. "Tany-Seq: Integrated Analysis of the Mouse Tanycyte Transcriptome." Cells 11, no. 9 (2022): 1565. http://dx.doi.org/10.3390/cells11091565.
Pełny tekst źródłaDale, Nicholas, and Cameron Frayling. "Tanycytes emerge as hypothalamic chemosensors." Physiology News, Spring 2012 (April 1, 2012): 26–29. http://dx.doi.org/10.36866/pn.86.26.
Pełny tekst źródłaDietrich, Marcelo O., and Tamas L. Horvath. "Fat incites tanycytes to neurogenesis." Nature Neuroscience 15, no. 5 (2012): 651–53. http://dx.doi.org/10.1038/nn.3091.
Pełny tekst źródłaLazcano, Iván, Agustina Cabral, Rosa María Uribe, et al. "Fasting Enhances Pyroglutamyl Peptidase II Activity in Tanycytes of the Mediobasal Hypothalamus of Male Adult Rats." Endocrinology 156, no. 7 (2015): 2713–23. http://dx.doi.org/10.1210/en.2014-1885.
Pełny tekst źródłaElizondo-Vega, Roberto, Karina Oyarce, Magdiel Salgado, et al. "Inhibition of Hypothalamic MCT4 and MCT1–MCT4 Expressions Affects Food Intake and Alters Orexigenic and Anorexigenic Neuropeptide Expressions." Molecular Neurobiology 57, no. 2 (2019): 896–909. http://dx.doi.org/10.1007/s12035-019-01776-6.
Pełny tekst źródłaBellamy, Charlotte, Hannah Tovell, Florent Dingli, et al. "CSIG-30. FUNCTIONAL CHARACTERISATION OF A NOVEL MUTATION IN PRKCA, THE MAJOR DRIVER OF CHORDOID GLIOMAS." Neuro-Oncology 25, Supplement_5 (2023): v47. http://dx.doi.org/10.1093/neuonc/noad179.0186.
Pełny tekst źródłaFrayling, Cameron, Ruth Britton, and Nicholas Dale. "ATP-mediated glucosensing by hypothalamic tanycytes." Journal of Physiology 589, no. 9 (2011): 2275–86. http://dx.doi.org/10.1113/jphysiol.2010.202051.
Pełny tekst źródłaGao, Yuanqing, Matthias H. Tschöp, and Serge Luquet. "Hypothalamic Tanycytes: Gatekeepers to Metabolic Control." Cell Metabolism 19, no. 2 (2014): 173–75. http://dx.doi.org/10.1016/j.cmet.2014.01.008.
Pełny tekst źródłaSeveri, Ilenia, Marco Fosca, Georgia Colleluori, et al. "High-Fat Diet Impairs Mouse Median Eminence: A Study by Transmission and Scanning Electron Microscopy Coupled with Raman Spectroscopy." International Journal of Molecular Sciences 22, no. 15 (2021): 8049. http://dx.doi.org/10.3390/ijms22158049.
Pełny tekst źródłaPrévot, Vincent. "Brain infection by SARS-CoV-2: Lifelong consequences." Open Access Government 41, no. 1 (2024): 22–23. http://dx.doi.org/10.56367/oag-041-10397.
Pełny tekst źródłaPrzybylska-Piech, Anna S., Victoria Diedrich, and Annika Herwig. "Seasonal changes in activity of hypothalamic thyroid hormone system in different winter phenotypes of Djungarian hamster (Phodopus sungorus)." PLOS ONE 19, no. 10 (2024): e0309591. http://dx.doi.org/10.1371/journal.pone.0309591.
Pełny tekst źródłaLanglet, F. "Tanycytes: A Gateway to the Metabolic Hypothalamus." Journal of Neuroendocrinology 26, no. 11 (2014): 753–60. http://dx.doi.org/10.1111/jne.12191.
Pełny tekst źródłaElizondo‐Vega, Roberto, Christian Cortes‐Campos, Maria J. Barahona, Karina A. Oyarce, Claudio A. Carril, and Maria A. García‐Robles. "The role of tanycytes in hypothalamic glucosensing." Journal of Cellular and Molecular Medicine 19, no. 7 (2015): 1471–82. http://dx.doi.org/10.1111/jcmm.12590.
Pełny tekst źródłaLanglet, Fanny. "Targeting Tanycytes: Balance between Efficiency and Specificity." Neuroendocrinology 110, no. 7-8 (2020): 574–81. http://dx.doi.org/10.1159/000505549.
Pełny tekst źródłaEbling, Francis J. P., and Jo E. Lewis. "Tanycytes and hypothalamic control of energy metabolism." Glia 66, no. 6 (2018): 1176–84. http://dx.doi.org/10.1002/glia.23303.
Pełny tekst źródłaDardente, Hugues. "HYPOTHALAMIC TANYCYTES ARE INVOLVED IN SEASONAL FUNCTIONS." IBRO Neuroscience Reports 15 (October 2023): S52. http://dx.doi.org/10.1016/j.ibneur.2023.08.2159.
Pełny tekst źródłaPrevot, Vincent, Markus Schwaninger, and Ruben Nogueiras. "The WATCH project: Tanycytes in health and disease." Open Access Government 37, no. 1 (2023): 132–33. http://dx.doi.org/10.56367/oag-037-10410.
Pełny tekst źródłaGivalois, Laurent, Sandor Arancibia, Gérard Alonso, and Lucia Tapia-Arancibia. "Expression of Brain-Derived Neurotrophic Factor and Its Receptors in the Median Eminence Cells with Sensitivity to Stress." Endocrinology 145, no. 10 (2004): 4737–47. http://dx.doi.org/10.1210/en.2004-0616.
Pełny tekst źródłade Vries, E. M., S. Nagel, R. Haenold та ін. "The Role of Hypothalamic NF-κB Signaling in the Response of the HPT-Axis to Acute Inflammation in Female Mice". Endocrinology 157, № 7 (2016): 2947–56. http://dx.doi.org/10.1210/en.2016-1027.
Pełny tekst źródłaBarahona, María Jose, Luciano Ferrada, and Francisco Nualart. "TANYCYTES-ASSOCIATED G6PASE SYSTEM CONTROL THE ENERGY BALANCE." IBRO Neuroscience Reports 15 (October 2023): S213. http://dx.doi.org/10.1016/j.ibneur.2023.08.340.
Pełny tekst źródłaBjelke, Börje, та Kjell Fuxe. "Intraventricular β-endorphin accumulates in DARPP-32 immunoreactive tanycytes". NeuroReport 5, № 3 (1993): 265–68. http://dx.doi.org/10.1097/00001756-199312000-00021.
Pełny tekst źródłaBöttcher, Mareike, Helge Müller-Fielitz, Sivaraj M. Sundaram та ін. "NF-κB signaling in tanycytes mediates inflammation-induced anorexia". Molecular Metabolism 39 (вересень 2020): 101022. http://dx.doi.org/10.1016/j.molmet.2020.101022.
Pełny tekst źródłaDale, Nicholas. "Purinergic signaling in hypothalamic tanycytes: Potential roles in chemosensing." Seminars in Cell & Developmental Biology 22, no. 2 (2011): 237–44. http://dx.doi.org/10.1016/j.semcdb.2011.02.024.
Pełny tekst źródłaRODRIGUEZ, E., J. BLAZQUEZ, F. PASTOR, et al. "Hypothalamic Tanycytes: A Key Component of Brain–Endocrine Interaction." International Review of Cytology 247 (2005): 89–164. http://dx.doi.org/10.1016/s0074-7696(05)47003-5.
Pełny tekst źródła