Gotowa bibliografia na temat „Tectono-metallogenic model”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Tectono-metallogenic model”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Tectono-metallogenic model":

1

Jiang, Hongjun, Chunsi Yang, Dequan Wang, Hui Zheng, Jie Li i Huayong Chen. "Multiple-Stage Mineralization in the Huayangchuan U−REE−Mo−Cu−Fe Ore Belt of the Qinling Orogen, Central China: Geological and Re−Os Geochronological Constraints". Journal of Earth Science 33, nr 1 (luty 2022): 193–204. http://dx.doi.org/10.1007/s12583-021-1557-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
AbstractThe Huayangchuan ore belt is located in the western segment of Xiaoqinling Orogen in the southern margin of the North China Craton (NCC), and hosts voluminous magmatism and significant U−REE−Mo−Cu−Fe polymetallic mineralization. However, geochronological framework of the various mineralization phases in this region is poorly understood. Here, we present new Re−Os isochron ages on magnetite from the Caotan Fe deposit (2 675 ± 410 Ma, MSWD = 0.55), and on pyrite from the Jialu REE deposit (2 127 ± 280 Ma, MSWD = 1.9) and Yuejiawa Cu deposit (418 ± 23 Ma, MSWD = 11.5), and Re−Os weighted average model age on pyrite from the Taoyuan Mo−U deposit (235 ± 14 Ma, MSWD = 0.17). These ages, combined with regional geology and mineralization ages from other deposits, suggest that mineralization in the Huayangchuan ore belt lasted from the Neoarchean to the Late Mesozoic. The mineralization corresponds to regional tectono-magmatic events, including the Neoar-chean alkali magmatism (REE mineralization), Paleoproterozoic plagioclase-amphibolite emplacement (Fe mineralization), Paleoproterozoic pegmatite magmatism (U mineralization), Paleozoic Shangdan oceanic slab subduction-related arc magmatism (Cu mineralization), Early Mesozoic Paleo-Tethys Ocean subduction-related arc magmatism (Mo−U mineralization), and Late Mesozoic Paleo-Pacific oceanic plate subduction direction change-related Mo(-Pb) mineralization. We proposed that the Huayang-chuan ore belt has undergone prolonged metallogenic evolution, and the magmatism and associated mineralization were controlled by regional geodynamic events.
2

Li, Bo, Wen Bo Wei i Le Tian Zhang. "Electrical Structure Revealed by Magnetotelluric Data at the East Part of Central Asian Orogenic Belt, Central Inner Mongolia". Applied Mechanics and Materials 448-453 (październik 2013): 3788–91. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.3788.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
The cental Asian orogenic belt (CAOB) which between the North China Craton and the Siberian Craton is one of the tectono-metallogenic belts in the world. The central Inner Mongolia belongs to the eastern part of the CAOB, recently a series of research and exploration work has been done in this region. However, no breakthrough has been made in the exploration of metal ore. In order to research current mineralization issues in the eastern part of the CAOB, a long magnetotelluric (MT) profile was acquired across the central part of Inner Mongolia. The profile starts within the DongUjimqinqi in the northwest, goes southeastward across the Chagan Obo-Arongqi fault, the Erenhot-Hegenshan fault, the Xilinhot fault and the Linxi fault, and ends around the Xar Moron fault in the northern part of Chifeng city; the strike direction of most faults is southeast; the faults have direct control effect to the magmation and mineralization of this region. The model of electrical structure along the profile can be divided into two regions: widely distributed low resistivity is the key feature north of Nianzigou; high resistance is the key feature south of Nianzigou. The Chagan Obo-Arongqi fault, the Erenhot-Hegenshan fault and the Xilinhot fault all present as a southeastward dipping conductor, which reflects their overthrusting process; there are many high conductivity areas along the faults in the region. The electrical structure to the south of Nianzigou is expressed as a mushroom shape, which reflects the tectonic origin of magmatic rock in this region.
3

An, Weicai, Chunji Xue, Yun Zhao, Chao Li, Dengfeng Xu i Bo Chen. "Petrogenesis and Tectonic Implications of Late Carboniferous Intrusions in the Tuwu-Yandong Porphyry Cu Belt (NW China): Constraints from Geochronology, Geochemistry and Sr–Nd–Hf Isotopes". Minerals 12, nr 12 (7.12.2022): 1573. http://dx.doi.org/10.3390/min12121573.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
The Tuwu-Yandong porphyry Cu belt is located on the southern margin of the Dananhu island arc in eastern Tianshan, constituting the largest Cu metallogenic belt in Northwest China. Two episodes (~334 Ma and ~317 Ma) of porphyry Cu-Mo mineralization in the belt have been recognized, associated with Early and Late Carboniferous felsic intrusions, respectively. The Carboniferous intrusions, therefore, provide a unique opportunity to investigate tectono-magmatic-metallogenic evolution of the belt. New LA–ICP–MS zircon U–Pb dating indicates that the mineralization-related and post-mineralization intrusions (granodiorite porphyry, gabbro, and granite porphyry) were formed at 321.8 ± 3.1 Ma, 313.5 ± 1.2 Ma, and 309.8 ± 2.5 Ma, respectively. The zircon trace element shows that the granodiorite porphyry (Ce4+/Ce3+ ratios, avg. 129, median = 112, n = 15) was likely derived from a more oxidized (and hydrous) magma source than that of the gabbro (Ce4+/Ce3+ ratios, avg. 74, median = 40, n = 15) and granite porphyry (Ce4+/Ce3+ ratios, avg. 100, median = 91, n = 15), being favorable for porphyry copper mineralization. The granodiorite porphyry shows an adakitic affinity (e.g., high Sr/Y ratios and low Y contents) and has high εNd(t) (6.4–6.7), εHf(t) (11.4–14.3), and Mg# values (47.4–58.1) and low (87Sr/86Sr)i (0.703804–0.703953), suggesting that the melt was derived from partial melting of a subducted oceanic slab followed by mantle peridotite interaction. The gabbro exhibits higher Al2O3 (16.5–17.4 wt.%), Cr (107–172 ppm), and Ni (37–77 ppm) contents and εNd(t) (6.6–7.2), εHf(t) (11.6–15.9), and Mg # (53.3–59.9) values, while it has lower (87Sr/86Sr)i values (0.703681–0.703882) than the granodiorite porphyry, indicating a depleted mantle source. The granite porphyry exhibits an affinity with non-fractionated I-type granites and possesses higher SiO2 (71.1–72.0 wt.%) contents, lower but positive εNd(t) (4.8–5.2), εHf(t) (10.3–13.0), and Mg # (38.7–41.0) values, and higher (87Sr/86Sr)i (0.704544–0.704998) than the granodiorite porphyry and gabbro, together with young Nd and Hf model ages, suggesting that the parental magmas originated from the partial melting of a juvenile lower crust. The enrichment in LREEs and LILEs (e.g., Ba, U, K and Sr) and depletion in HFSEs (e.g., Nb, Ta, and Ti) indicate that these intrusive rocks formed in the subduction zone. With the integration of previous studies, it can be inferred that the northward flat subduction of the Kangguer ocean slab at ca. 335–315 Ma caused the formation of the adakites and associated porphyry Cu mineralization in the Tuwu-Yandong belt. After the prolonged flat subduction, slab rollback may have occurred at ca. 314–310 Ma, followed by a “quiet period” before the final closure of the ancient Tianshan Ocean along the Kangguer Fault in this belt.
4

Bogossian, Jessica, Anthony I. S. Kemp i Steffen G. Hagemann. "Linking Gold Systems to the Crust-Mantle Evolution of Archean Crust in Central Brazil". Minerals 11, nr 9 (30.08.2021): 944. http://dx.doi.org/10.3390/min11090944.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
The Goiás Archean Block (GAB) in central Brazil is an important gold district that hosts several world-class orogenic gold deposits. A better comprehension of the crustal, tectono-magmatic, and metallogenic settings of the GAB is essential to accurately define its geological evolution, evaluate Archean crustal growth models, and target gold deposits. We present an overview of gold systems, regional whole-rock Sm-Nd analyses that have been used to constrain the geological evolution of the GAB, and augment this with new in situ zircon U-Pb and Hf-O isotope data. The orogenic gold deposits show variable host rocks, structural settings, hydrothermal alteration, and ore mineralogy, but they represent epigenetic deposits formed during the same regional hydrothermal event. The overprinting of metamorphic assemblages by ore mineralogy suggests the hydrothermal event is post-peak metamorphism. The metamorphic grade of the host rocks is predominantly greenschist, locally reaching amphibolite facies. Isotope-time trends support a Mesoarchean origin of the GAB, with ocean opening at 3000–2900 Ma, and reworking at 2800–2700 Ma. Crustal growth was dominated by subduction processes via in situ magmatic additions along lithospheric discontinuities and craton margins. This promoted a crustal architecture composed of young, juvenile intra-cratonic terranes and old, long-lived reworked crustal margins. This framework provided pathways for magmatism and fluids that drove the gold endowment of the GAB.

Rozprawy doktorskie na temat "Tectono-metallogenic model":

1

Grare, Alexis. "Tectono-metallogenic model of the Kiggavik uranium deposits, Nunavut, Canada". Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS628.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
Les bassins Paléo- à Mésoproterozoiques (1750-1500 Ma) de l’Athabasca (Saskatchewan) et du Thelon (Nunavut), ainsi que le socle sous-jacent, présentent des gisements d’uranium de classe mondiale. Néanmoins, malgré son fort potentiel exploratoire, le bassin du Thelon, moins accessible, a été bien moins étudié à ce jour. La zone de Kiggavik, sur la bordure Est de ce bassin, a été intensément explorée par AREVA Resources Canada (ARC) jusqu’en 2016 ; elle abrite des minéralisations à uranium économiquement importantes, présentant un contrôle clair par la fracturation. Préciser la genèse, le contrôle structural et la chronologie de ces minéralisations est crucial pour comprendre le développement et la localisation de ces gisements, et par conséquent pour améliorer les stratégies d’exploration dans ce district. Ce travail de thèse se focalise sur l’étude du réseau complexe et polyphasé de fractures et de failles associé aux minéralisations à uranium dans la zone de Kiggavik. Il consiste en une étude multi-échelle intégrée combinant des analyses méso- à microstructurales sur le terrain et sur carottes de forages avec des analyses pétrologiques, géochimiques et géochronologiques. Les données géophysiques et géologiques sur le prospect de Contact récemment découvert, mais aussi celles provenant des autres gisements et prospects de la zone, ont permis de construire un modèle tectono-métallogénique multi-stade à l’échelle de la zone de Kiggavik. Nos résultats montrent que les failles majeures de directions ENE-WSW et NE-SW ont été préalablement formées durant les orogenèses Thelon-Taltson (2100-1900 Ma) et Trans-Hudson (1900-1800 Ma) ; ces failles ont été minéralisées en uranium à quatre stades : U0, U1, U2 et U3, chacun présentant des caractéristiques distincts en terme de fracturation, altération et minéralisation. La minéralisation U0 est interprétée comme étant d’origine magmatique, se déroulant à ~1830 Ma ; elle est liée à une micro-bréchification de la roche encaissante, qui présente une très faible altération. Cet événement tectonique s’est déroulé sous une contrainte encore mal contrainte, avec un raccourcissement de direction WSW-ENE. Cette minéralisation est suivie par un événement tectonique à ~1750 Ma qui a entrainé une forte bréchification siliceuse associée à une hématisation pervasive de la roche encaissante. Cette événement est antérieur au dépôt de la formation du Thelon et est d’origine magmatique-épithermale. Il a entrainé une silicification pervasive des failles précédemment formées, donnant naissance à la « Quartz Breccia » qui a compartimentalisé les événements de fracturation qui ont suivi, contrôlant les fluides minéralisateurs en agissant comme une barrière. Le stade de fracturation-minéralisation U0 et l’événement silicifiant reflètent l’importance des événements pré-Thelon en lien avec le magmatisme du groupe de Baker Lake, dans le contrôle de la fracturation et des circulations de fluides postérieures, et par conséquent de la localisation des minéralisations à uranium. U1, U2 et U3 sont postérieures au dépôt de la formation du Thelon : U1 et U2 sont deux minéralisations de type discordance, associées à des stades de fracturation qui se sont produit en réponse à un σ1 de direction WNW-ESE et σ3 de direction NNE-SSW; et à un σ1 de direction NE-SW et σ3 de direction NW-SE, respectivement. U1 et U2 se sont formées entre ~1500 et 1300 Ma et sont liées à la circulation de saumures diagénétiques porteuses d’uranium venant de la formation du Thelon. Postérieurement à U1 et U2, mais antérieurement à la mise en place des dykes de MacKenzie (1267 Ma), une contrainte extensive NE-SW a causé le décalage normal-dextre des corps minéralisés précédemment formés, via la réactivation de failles de directions NNW-SSE et E-W. Cet événement de fracturation a entrainé la circulation de fluides chauds, acides qui ont provoqué la désilicification et l’illitisation de la roche encaissante et à la déstabilisation des oxydes [...]
The Paleoproterozoic to Mesoproterozoic (1750–1500 Ma) Athabasca (Saskatchewan) and Thelon (Nunavut) basins, Canada, host world-class high-grade uranium deposits. However, while being prospective, the Thelon Basin has been much less accessible and studied to date. The Kiggavik area, on the eastern border of the Thelon Basin was intensively explored by AREVA Resources Canada (ARC) until 2016, and hosts significant fracture-controlled uranium resources. Understanding the genesis, structural controls and timing of the mineralization is crucial to better understand the development and location of these deposits, and therefore to improve exploration strategies in this uranium district. This work focuses on the study of the complex multiphase fault and fracture network associated with uranium mineralization in the Kiggavik area. It consists in an integrated and multiscale study combining meso- and microstructural analyses from field and drill cores with petrological, geochemical and geochronological analyses. Geophysical and geological data from the recently discovered Contact prospect as well as from other nearby deposits and prospects enabled us to decipher the tectono-metallogenic multi-stage model at the scale of the entire Kiggavik area. Our results show that the main ENE-WSW and NE-SW fault zones formed earlier during the Thelon and Trans-Hudsonian orogenies and were mineralized in four stages, U0, U1, U2, U3, with distinctive fracture, alteration and mineralization patterns. U0, inferred of magmatic origin, likely occurred at ca. 1830 Ma and is related to micro-brecciation and weak clay-alteration under a yet poorly constrained stress, likely a WSW-ENE shortening. This event is followed by intense quartz brecciation, iron oxidation and veining at ca. 1750 Ma. This silicifying event that predates deposition of the Thelon formation is of magmatic epithermal origin; it caused pervasive silicification of former fault zones, giving birth to the so-called Quartz Breccia that compartimentalized subsequent fracturing and behaved as a barrier for mineralizing fluids. Both the U0 mineralization and the subsequent silicifying events reflect the importance of pre-Thelon magmatic-related fracturing/fluid circulation events on controlling the future development and location of later unconformity-type uranium deposits. U1, U2 and U3 postdate deposition of the Thelon formation; U1 and U2 mineralization events are associated with two fracturing stages that occurred in response to a far-field stress that evolved from WNW-ESE σ1 and NNW-SSE σ3 to NE-SW σ1 and NW-SE σ3, respectively; both formed at ~1500-1300 Ma and are related to circulation of Thelon-derived U-bearing basinal brines. A post U1/U2, but pre-MacKenzie dikes, NE-SW oriented extensional stress caused the normal-dextral offset of the orebodies by reactivating NNW-SSE and E-W faults. This fracturing event triggered circulation of hot acidic fluids, desilicifying, illitizing and bleaching the host-rock, remobilizing and reprecipitating previous uranium stock. U3 is linked to uranium redistribution/reconcentration along redox fronts and occurred through weak reopening of the fracture network enhancing percolation of meteoric fluids at 500-300 Ma. Our study shows that unlike in the Athabasca Basin where uranium deposits are unconformity-related in type and where clay alteration halos are spatially and genetically associated to ore bodies, in the Kiggavik area (1) uranium deposits are of mixed type evolving from magmatic-related (U0) to unconformity-related (U1-U2), with a final perturbation by meteoric fluid percolation (U3), and (2) the strongest clay alteration event postdates the main stages of mineralization (U0 to U2). Our study also emphasizes the need of accurate structural analyses combined with petro-geochemical and geochronological studies to better constrain the genesis and the structural plumbing responsible for ore deposits formation and to help provide more [...]

Do bibliografii