Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Temperature-modulated differential scanning calorimetry.

Artykuły w czasopismach na temat „Temperature-modulated differential scanning calorimetry”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Temperature-modulated differential scanning calorimetry”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

ISHIKIRIYAMA, KAZUHIKO. "Temperature Modulated Differential Scanning Calorimetry." FIBER 65, no. 11 (2009): P.428—P.432. http://dx.doi.org/10.2115/fiber.65.p_428.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Van Hemelrijck, A., and B. Van Mele. "Modulated temperature differential scanning calorimetry." Journal of thermal analysis 49, no. 1 (July 1997): 437–42. http://dx.doi.org/10.1007/bf01987467.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Van Assche, G., A. Van Hemelrijck, and B. Van Mele. "Modulated temperature differential scanning calorimetry." Journal of thermal analysis 49, no. 1 (July 1997): 443–47. http://dx.doi.org/10.1007/bf01987468.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Jiang, Zhong, Corrie T. Imrie, and John M. Hutchinson. "Temperature modulated differential scanning calorimetry. Part I:." Thermochimica Acta 315, no. 1 (May 1998): 1–9. http://dx.doi.org/10.1016/s0040-6031(98)00270-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Cser, F., F. Rasoul, and E. Kosior. "Modulated Differential Scanning Calorimetry." Journal of thermal analysis 50, no. 5-6 (December 1997): 727–44. http://dx.doi.org/10.1007/bf01979203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Roussel, F., and J. M. Buisine. "Modulated differential scanning calorimetry." Journal of Thermal Analysis 47, no. 3 (September 1996): 715–25. http://dx.doi.org/10.1007/bf01981806.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Reading, M., A. Luget, and R. Wilson. "Modulated differential scanning calorimetry." Thermochimica Acta 238 (June 1994): 295–307. http://dx.doi.org/10.1016/s0040-6031(94)85215-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hourston, D. J., M. Song, H. M. Pollock, and A. Hammiche. "Modulated differential scanning calorimetry." Journal of thermal analysis 49, no. 1 (July 1997): 209–18. http://dx.doi.org/10.1007/bf01987441.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Gill, P. S., S. R. Sauerbrunn, and M. Reading. "Modulated differential scanning calorimetry." Journal of Thermal Analysis 40, no. 3 (September 1993): 931–39. http://dx.doi.org/10.1007/bf02546852.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Krüger, Jan, Wolfgang Manglkammer, Andrä le Coutre, and Patrick Mesquida. "Differential scanning calorimetry and temperature-modulated differential scanning calorimetry: an extension to lower temperatures." High Temperatures-High Pressures 32, no. 4 (2000): 479–85. http://dx.doi.org/10.1068/htwu580.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Simon, Sindee L. "Temperature-modulated differential scanning calorimetry: theory and application." Thermochimica Acta 374, no. 1 (June 2001): 55–71. http://dx.doi.org/10.1016/s0040-6031(01)00493-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Ding, E. "Theory of general temperature modulated differential scanning calorimetry." Thermochimica Acta 378, no. 1-2 (October 24, 2001): 51–68. http://dx.doi.org/10.1016/s0040-6031(01)00625-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Ozawa, T. "Temperature modulated differential scanning calorimetry-applicability and limitation." Pure and Applied Chemistry 69, no. 11 (January 1, 1997): 2315–20. http://dx.doi.org/10.1351/pac199769112315.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Dranca, Ion, and Tudor Lupascu. "Implications of Global and Local Mobility in Amorphous Excipients as Determined by DSC and TM DSC." Chemistry Journal of Moldova 4, no. 2 (December 2009): 105–15. http://dx.doi.org/10.19261/cjm.2009.04(2).02.

Pełny tekst źródła
Streszczenie:
The paper explores the use of differential scanning calorimetry (DSC) and temperature modulated differential scanning calorimetry (TM DSC) to study α- and β- processes in amorphous sucrose and trehalose. The real part of the complex heat capacity is evaluated at the frequencies, f, from 5 to 20mHz. β-relaxations were studied by annealing glassy samples at different temperatures and subsequently heating at different rates in a differential scanning calorimeter.
Style APA, Harvard, Vancouver, ISO itp.
15

Ishikiriyama, K., A. Boller, and B. Wunderlich. "Melting of indium by temperature-modulated differential scanning calorimetry." Journal of thermal analysis 50, no. 4 (November 1997): 547–58. http://dx.doi.org/10.1007/bf01979027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Ishikiriyama, K., and B. Wunderlich. "Cell asymmetry correction for temperature modulated differential scanning calorimetry." Journal of thermal analysis 50, no. 3 (October 1997): 337–46. http://dx.doi.org/10.1007/bf01980494.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Wang, Bin, and Qiao Lin. "Temperature-modulated differential scanning calorimetry in a MEMS device." Sensors and Actuators B: Chemical 180 (April 2013): 60–65. http://dx.doi.org/10.1016/j.snb.2012.02.044.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Leyva-Porras, César, Pedro Cruz-Alcantar, Vicente Espinosa-Solís, Eduardo Martínez-Guerra, Claudia I. Piñón-Balderrama, Isaac Compean Martínez, and María Z. Saavedra-Leos. "Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries." Polymers 12, no. 1 (December 18, 2019): 5. http://dx.doi.org/10.3390/polym12010005.

Pełny tekst źródła
Streszczenie:
Phase transition issues in the field of foods and drugs have significantly influenced these industries and consequently attracted the attention of scientists and engineers. The study of thermodynamic parameters such as the glass transition temperature (Tg), melting temperature (Tm), crystallization temperature (Tc), enthalpy (H), and heat capacity (Cp) may provide important information that can be used in the development of new products and improvement of those already in the market. The techniques most commonly employed for characterizing phase transitions are thermogravimetric analysis (TGA)
Style APA, Harvard, Vancouver, ISO itp.
19

Grunenfelder, Lessa K., and Steven R. Nutt. "Prepreg age monitoring via differential scanning calorimetry." Journal of Reinforced Plastics and Composites 31, no. 5 (March 2012): 295–302. http://dx.doi.org/10.1177/0731684411431020.

Pełny tekst źródła
Streszczenie:
Fabrication of composite parts from prepregs often requires layup and preparation times of days and even weeks, during which prepregs undergo room-temperature aging. The aging process can compromise compaction, tack, and overall quality of composite parts, and thus a need exists for an accurate and convenient method to monitor the extent of prepreg aging as a function of out-time. Here, we report a method to monitor prepreg age, which involves measurement of changes in glass transition temperature as a function of room-temperature aging time. Samples from three out-of-autoclave prepreg systems
Style APA, Harvard, Vancouver, ISO itp.
20

Hutchinson, John M., Ang Boon Tong, and Zhong Jiang. "Aging of polycarbonate studied by temperature modulated differential scanning calorimetry." Thermochimica Acta 335, no. 1-2 (September 1999): 27–42. http://dx.doi.org/10.1016/s0040-6031(99)00134-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Aldén, Maggie, and Anna Hillgren. "Investigation of aqueous solutions by modulated temperature differential scanning calorimetry." Thermochimica Acta 311, no. 1-2 (March 1998): 51–60. http://dx.doi.org/10.1016/s0040-6031(97)00475-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Van Den Mooter, Guy, Duncan Q. M. Craig, and Paul G. Royall. "Characterization of amorphous ketoconazole using modulated temperature differential scanning calorimetry." Journal of Pharmaceutical Sciences 90, no. 8 (August 2001): 996–1003. http://dx.doi.org/10.1002/jps.1052.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Carpentier, L., O. Bustin, and M. Descamps. "Temperature-modulated differential scanning calorimetry as a specific heat spectroscopy." Journal of Physics D: Applied Physics 35, no. 4 (February 1, 2002): 402–8. http://dx.doi.org/10.1088/0022-3727/35/4/317.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Liu, Peng, Cai Qin Gu, Qing Zhu Zeng, and Hao Huai Liu. "The Extrapolation Method for Hyper Differential Scanning Calorimetry." Advanced Materials Research 554-556 (July 2012): 1994–98. http://dx.doi.org/10.4028/www.scientific.net/amr.554-556.1994.

Pełny tekst źródła
Streszczenie:
In order to eliminate the temperature lag effect and obtain the accurate temperature results from hyper differential scanning calorimetry (Hyper-DSC) operated at high heating rate, an adjustable method, namely “Extrapolation Method”, had been introduced by us in former papers. And in this paper, we wanted to support the accuracy of this method by other instruments. Specifically, the extrapolated glass transition temperatures (Tg, 61.5 °C) of PLA film, which was obtained by Hyper-DSC, was close to the value detected directly by normal DSC (62.0 °C). And the extrapolated Tg of waxy starch film (
Style APA, Harvard, Vancouver, ISO itp.
25

Shoifet, Evgeni, Gunnar Schulz, and Christoph Schick. "Temperature modulated differential scanning calorimetry – extension to high and low frequencies." Thermochimica Acta 603 (March 2015): 227–36. http://dx.doi.org/10.1016/j.tca.2014.10.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Loubens, J., and F. Hoppenot. "Contributions of Tzero™ technology to temperature modulated Differential scanning calorimetry." MATEC Web of Conferences 3 (2013): 01025. http://dx.doi.org/10.1051/matecconf/20130301025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Amarasinghe, G., F. Chen, A. Genovese, and R. A. Shanks. "Thermal memory of polyethylenes analyzed by temperature modulated differential scanning calorimetry." Journal of Applied Polymer Science 90, no. 3 (August 18, 2003): 681–92. http://dx.doi.org/10.1002/app.12694.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Jiang, Zhong, John M. Hutchinson, and Corrie T. Imrie. "Temperature-modulated differential scanning calorimetry. Part II. Determination of activation energies." Polymer International 47, no. 1 (September 1998): 72–75. http://dx.doi.org/10.1002/(sici)1097-0126(199809)47:1<72::aid-pi999>3.0.co;2-n.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Lacey, A. A. "A model for polymer melting during modulated-temperature differential scanning calorimetry." IMA Journal of Applied Mathematics 66, no. 5 (October 1, 2001): 449–76. http://dx.doi.org/10.1093/imamat/66.5.449.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Venkata Krishnan, R., and K. Nagarajan. "Evaluation of heat capacity measurements by temperature-modulated differential scanning calorimetry." Journal of Thermal Analysis and Calorimetry 102, no. 3 (April 9, 2010): 1135–40. http://dx.doi.org/10.1007/s10973-010-0770-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Hensel, A., and C. Schick. "Temperature calibration of temperature-modulated differential scanning calorimeters." Thermochimica Acta 304-305 (November 1997): 229–37. http://dx.doi.org/10.1016/s0040-6031(97)00186-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Cao, Jinan. "Mathematical studies of modulated differential scanning calorimetry." Thermochimica Acta 325, no. 2 (January 1999): 101–9. http://dx.doi.org/10.1016/s0040-6031(98)00559-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Rösgen, Jörg, and Hans-Jürgen Hinz. "Pressure-Modulated Differential Scanning Calorimetry: Theoretical Background." Analytical Chemistry 78, no. 4 (February 2006): 991–96. http://dx.doi.org/10.1021/ac0516436.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Masson, J.-F., and G. M. Polomark. "Bitumen microstructure by modulated differential scanning calorimetry." Thermochimica Acta 374, no. 2 (July 2001): 105–14. http://dx.doi.org/10.1016/s0040-6031(01)00478-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Toda, Akihiko. "Temperature-Modulated Scanning Calorimetry of Melting–Recrystallization of Poly(butylene terephthalate)." Polymers 13, no. 1 (January 1, 2021): 152. http://dx.doi.org/10.3390/polym13010152.

Pełny tekst źródła
Streszczenie:
The melting and recrystallization behaviors of poly(butylene terephthalate) (PBT) were investigated using temperature-modulated scanning calorimetry in both fast- and conventional slow-scan modes. With this method, the response of multiple transition kinetics, such as melting and recrystallization, can be differentiated by utilizing the difference in the time constants of the kinetics. In addition to the previous result of temperature-modulated fast-scan calorimetry of polyethylene terephthalate (PET), the supporting evidence of another aromatic polyester, PBT, confirmed the behavior of the ex
Style APA, Harvard, Vancouver, ISO itp.
36

Wunderlich, B., A. Boller, I. Okazaki, K. Ishikiriyama, W. Chen, M. Pyda, J. Pak, I. Moon, and R. Androsch. "Temperature-modulated differential scanning calorimetry of reversible and irreversible first-order transitions." Thermochimica Acta 330, no. 1-2 (May 1999): 21–38. http://dx.doi.org/10.1016/s0040-6031(99)00037-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Galovic, S., B. Secerov, S. Trifunovic, D. Milicevic, and E. Suljovrujic. "A study of gamma-irradiated polyethylenes by temperature modulated differential scanning calorimetry." Radiation Physics and Chemistry 81, no. 9 (September 2012): 1374–77. http://dx.doi.org/10.1016/j.radphyschem.2011.11.054.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Baroni, A. F., A. M. Sereno, and M. D. Hubinger. "Thermal transitions of osmotically dehydrated tomato by modulated temperature differential scanning calorimetry." Thermochimica Acta 395, no. 1-2 (January 2002): 237–49. http://dx.doi.org/10.1016/s0040-6031(02)00220-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Van Assche, G., A. Van Hemelrijck, H. Rahier, and B. Van Mele. "Modulated temperature differential scanning calorimetry: Cure, vitrification, and devitrification of thermosetting systems." Thermochimica Acta 304-305 (November 1997): 317–34. http://dx.doi.org/10.1016/s0040-6031(97)00175-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

López-Paz, Jesús, Carlos Gracia-Fernández, Silvia Gómez-Barreiro, Jorge López-Beceiro, Javier Nebreda, and Ramón Artiaga. "Study of bitumen crystallization by temperature-modulated differential scanning calorimetry and rheology." Journal of Materials Research 27, no. 10 (March 20, 2012): 1410–16. http://dx.doi.org/10.1557/jmr.2012.73.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Gunaratne, L. M. W. K., and R. A. Shanks. "Thermal memory of poly(3-hydroxybutyrate) using temperature-modulated differential scanning calorimetry." Journal of Polymer Science Part B: Polymer Physics 44, no. 1 (2005): 70–78. http://dx.doi.org/10.1002/polb.20676.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Khatiwada, Bal K., Boonta Hetayothin, and Frank D. Blum. "Thermal Properties of PMMA on Silica Using Temperature-Modulated Differential Scanning Calorimetry." Macromolecular Symposia 327, no. 1 (May 2013): 20–28. http://dx.doi.org/10.1002/masy.201350502.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Lacey, A. A., and C. V. Nikolopoulos. "A 1D model for polymer melting during modulated temperature differential scanning calorimetry." IMA Journal of Applied Mathematics 71, no. 2 (April 1, 2006): 186–209. http://dx.doi.org/10.1093/imamat/hxh096.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Okazaki, Iwao, and Bernhard Wunderlich. "Reversible Melting in Polymer Crystals Detected by Temperature-Modulated Differential Scanning Calorimetry." Macromolecules 30, no. 6 (March 1997): 1758–64. http://dx.doi.org/10.1021/ma961539d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Srikaeo, Khongsak, John E. Furst, John F. Ashton, Robert W. Hosken, and Peter A. Sopade. "Wheat grain cooking process as investigated by modulated temperature differential scanning calorimetry." Carbohydrate Polymers 61, no. 2 (August 2005): 203–10. http://dx.doi.org/10.1016/j.carbpol.2005.05.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Coleman, N. "Modulated temperature differential scanning calorimetry: A novel approach to pharmaceutical thermal analysis." International Journal of Pharmaceutics 135, no. 1-2 (June 17, 1996): 13–29. http://dx.doi.org/10.1016/0378-5173(95)04463-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Lacey, A. A., C. Nikolopoulos, and M. Reading. "A mathematical model for Modulated Differential Scanning Calorimetry." Journal of thermal analysis 50, no. 1-2 (September 1997): 279–333. http://dx.doi.org/10.1007/bf01979568.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

PIELICHOWSKI, KRZYSZTOF, and KINGA FLEJTUCH. "http://en.www.ichp.pl/Application-of-modulated-differential-scanning-calorimetry-." Polimery 47, no. 11/12 (November 2002): 784–92. http://dx.doi.org/10.14314/polimery.2002.784.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Bloxham, Joseph C., Joseph Hogge, Neil F. Giles, Thomas A. Knotts, and W. Vincent Wilding. "Modulated Differential Scanning Calorimetry Measurements of 27 Compounds." Journal of Chemical & Engineering Data 66, no. 7 (June 10, 2021): 2773–82. http://dx.doi.org/10.1021/acs.jced.1c00171.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Chang, S. S. "Temperature gradient in differential scanning calorimetry." Thermochimica Acta 178 (April 1991): 195–201. http://dx.doi.org/10.1016/0040-6031(91)80310-f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!