Gotowa bibliografia na temat „Temporal Graph Processing”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Temporal Graph Processing”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Temporal Graph Processing"

1

Christensen, Andrew J., Ananya Sen Gupta, and Ivars Kirsteins. "Sonar target feature representation using temporal graph networks." Journal of the Acoustical Society of America 151, no. 4 (2022): A102. http://dx.doi.org/10.1121/10.0010791.

Pełny tekst źródła
Streszczenie:
Autonomous sonar target recognition suffers from uncertainty caused by waveguide distortions to signal, unknown target geometry, and morphing target features. Typical “black-box” neural networks do not produce physically interpretable features and, therefore, are not effective in meeting these challenges. The primary objective of our work is to harness signal processing with machine learning to extract braided features that allow such physical interpretation by a domain expert. In this work, we introduce a feature extraction method using graph neural networks (GNNs) that seeks to discover brai
Style APA, Harvard, Vancouver, ISO itp.
2

Choi, Jeongwhan, Hwangyong Choi, Jeehyun Hwang, and Noseong Park. "Graph Neural Controlled Differential Equations for Traffic Forecasting." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 6 (2022): 6367–74. http://dx.doi.org/10.1609/aaai.v36i6.20587.

Pełny tekst źródła
Streszczenie:
Traffic forecasting is one of the most popular spatio-temporal tasks in the field of machine learning. A prevalent approach in the field is to combine graph convolutional networks and recurrent neural networks for the spatio-temporal processing. There has been fierce competition and many novel methods have been proposed. In this paper, we present the method of spatio-temporal graph neural controlled differential equation (STG-NCDE). Neural controlled differential equations (NCDEs) are a breakthrough concept for processing sequential data. We extend the concept and design two NCDEs: one for the
Style APA, Harvard, Vancouver, ISO itp.
3

Zhao, Xiaojuan, Aiping Li, Rong Jiang, Kai Chen, and Zhichao Peng. "Householder Transformation-Based Temporal Knowledge Graph Reasoning." Electronics 12, no. 9 (2023): 2001. http://dx.doi.org/10.3390/electronics12092001.

Pełny tekst źródła
Streszczenie:
Knowledge graphs’ reasoning is of great significance for the further development of artificial intelligence and information retrieval, especially for reasoning over temporal knowledge graphs. The rotation-based method has been shown to be effective at modeling entities and relations on a knowledge graph. However, due to the lack of temporal information representation capability, existing approaches can only model partial relational patterns and they cannot handle temporal combination reasoning. In this regard, we propose HTTR: Householder Transformation-based Temporal knowledge graph Reasoning
Style APA, Harvard, Vancouver, ISO itp.
4

Liu, Jun. "Motion Action Analysis at Basketball Sports Scene Based on Image Processing." Scientific Programming 2022 (March 7, 2022): 1–11. http://dx.doi.org/10.1155/2022/7349548.

Pełny tekst źródła
Streszczenie:
To solve the problems of low accuracy and high time cost in manual recording and statistics of basketball data, an automatic analysis method of motion action under the basketball sports scene based on the spatial temporal graph convolutional neural network is proposed. By using the graph structure in the data structure to model the joints and limbs of the human body, and using the spatial temporal graph structure to model the posture action, the extraction and estimation of human body posture in basketball sports scenes are realized. Then, training combined with transfer learning, the recognit
Style APA, Harvard, Vancouver, ISO itp.
5

Li, Jing, Wenyue Guo, Haiyan Liu, Xin Chen, Anzhu Yu, and Jia Li. "Predicting User Activity Intensity Using Geographic Interactions Based on Social Media Check-In Data." ISPRS International Journal of Geo-Information 10, no. 8 (2021): 555. http://dx.doi.org/10.3390/ijgi10080555.

Pełny tekst źródła
Streszczenie:
Predicting user activity intensity is crucial for various applications. However, existing studies have two main problems. First, as user activity intensity is nonstationary and nonlinear, traditional methods can hardly fit the nonlinear spatio-temporal relationships that characterize user mobility. Second, user movements between different areas are valuable, but have not been utilized for the construction of spatial relationships. Therefore, we propose a deep learning model, the geographical interactions-weighted graph convolutional network-gated recurrent unit (GGCN-GRU), which is good at fit
Style APA, Harvard, Vancouver, ISO itp.
6

Ke, Xiangyu, Arijit Khan, and Francesco Bonchi. "Multi-relation Graph Summarization." ACM Transactions on Knowledge Discovery from Data 16, no. 5 (2022): 1–30. http://dx.doi.org/10.1145/3494561.

Pełny tekst źródła
Streszczenie:
Graph summarization is beneficial in a wide range of applications, such as visualization, interactive and exploratory analysis, approximate query processing, reducing the on-disk storage footprint, and graph processing in modern hardware. However, the bulk of the literature on graph summarization surprisingly overlooks the possibility of having edges of different types. In this article, we study the novel problem of producing summaries of multi-relation networks, i.e., graphs where multiple edges of different types may exist between any pair of nodes. Multi-relation graphs are an expressive mo
Style APA, Harvard, Vancouver, ISO itp.
7

Zhang, Guoxing, Haixiao Wang, and Yuanpu Yin. "Multi-type Parameter Prediction of Traffic Flow Based on Time-space Attention Graph Convolutional Network." International Journal of Circuits, Systems and Signal Processing 15 (August 11, 2021): 902–12. http://dx.doi.org/10.46300/9106.2021.15.97.

Pełny tekst źródła
Streszczenie:
Graph Convolutional Neural Networks are more and more widely used in traffic flow parameter prediction tasks by virtue of their excellent non-Euclidean spatial feature extraction capabilities. However, most graph convolutional neural networks are only used to predict one type of traffic flow parameter. This means that the proposed graph convolutional neural network may only be effective for specific parameters of specific travel modes. In order to improve the universality of graph convolutional neural networks. By embedding time feature and spatio-temporal attention layer, we propose a spatio-
Style APA, Harvard, Vancouver, ISO itp.
8

Zheng, Xiaolong, Dongdong Guan, Bangjie Li, Zhengsheng Chen, and Lefei Pan. "Global and Local Graph-Based Difference Image Enhancement for Change Detection." Remote Sensing 15, no. 5 (2023): 1194. http://dx.doi.org/10.3390/rs15051194.

Pełny tekst źródła
Streszczenie:
Change detection (CD) is an important research topic in remote sensing, which has been applied in many fields. In the paper, we focus on the post-processing of difference images (DIs), i.e., how to further improve the quality of a DI after the initial DI is obtained. The importance of DIs for CD problems cannot be overstated, however few methods have been investigated so far for re-processing DIs after their acquisition. In order to improve the DI quality, we propose a global and local graph-based DI-enhancement method (GLGDE) specifically for CD problems; this is a plug-and-play method that c
Style APA, Harvard, Vancouver, ISO itp.
9

Steinbauer, Matthias, and Gabriele Anderst Kotsis. "DynamoGraph: extending the Pregel paradigm for large-scale temporal graph processing." International Journal of Grid and Utility Computing 7, no. 2 (2016): 141. http://dx.doi.org/10.1504/ijguc.2016.077491.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Chen, Yaosen, Bing Guo, Yan Shen, Wei Wang, Weichen Lu, and Xinhua Suo. "Boundary graph convolutional network for temporal action detection." Image and Vision Computing 109 (May 2021): 104144. http://dx.doi.org/10.1016/j.imavis.2021.104144.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!