Gotowa bibliografia na temat „Ternary Jordan algebra”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Ternary Jordan algebra”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Ternary Jordan algebra"

1

BREMNER, MURRAY R., and IRVIN R. HENTZEL. "IDENTITIES RELATING THE JORDAN PRODUCT AND THE ASSOCIATOR IN THE FREE NONASSOCIATIVE ALGEBRA." Journal of Algebra and Its Applications 05, no. 01 (2006): 77–88. http://dx.doi.org/10.1142/s0219498806001594.

Pełny tekst źródła
Streszczenie:
We determine the identities of degree ≤ 6 satisfied by the symmetric (Jordan) product a○b = ab + ba and the associator [a,b,c] = (ab)c - a(bc) in every nonassociative algebra. In addition to the commutative identity a○b = b○a we obtain one new identity in degree 4 and another new identity in degree 5. We demonstrate the existence of further new identities in degree 6. These identities define a variety of binary-ternary algebras which generalizes the variety of Jordan algebras in the same way that Akivis algebras generalize Lie algebras.
Style APA, Harvard, Vancouver, ISO itp.
2

CASTRO, CARLOS. "ON OCTONIONIC GRAVITY, EXCEPTIONAL JORDAN STRINGS AND NONASSOCIATIVE TERNARY GAUGE FIELD THEORIES." International Journal of Geometric Methods in Modern Physics 09, no. 03 (2012): 1250021. http://dx.doi.org/10.1142/s0219887812500211.

Pełny tekst źródła
Streszczenie:
Novel nonassociative octonionic ternary gauge field theories are proposed based on a ternary bracket. This paves the way to the many physical applications of exceptional Jordan Strings/Membranes and Octonionic Gravity. The old octonionic gravity constructions based on the split octonion algebra Os (which strictly speaking is not a division algebra) is extended to the full fledged octonion division algebra O. A real-valued analog of the Einstein–Hilbert Lagrangian [Formula: see text] involving sums of all the possible contractions of the Ricci tensors plus their octonionic-complex conjugates is
Style APA, Harvard, Vancouver, ISO itp.
3

Šlapal, Josef. "Digital Jordan Curves and Surfaces with Respect to a Closure Operator." Fundamenta Informaticae 179, no. 1 (2021): 59–74. http://dx.doi.org/10.3233/fi-2021-2013.

Pełny tekst źródła
Streszczenie:
In this paper, we propose new definitions of digital Jordan curves and digital Jordan surfaces. We start with introducing and studying closure operators on a given set that are associated with n-ary relations (n > 1 an integer) on this set. Discussed are in particular the closure operators associated with certain n-ary relations on the digital line ℤ. Of these relations, we focus on a ternary one equipping the digital plane ℤ2 and the digital space ℤ3 with the closure operator associated with the direct product of two and three, respectively, copies of this ternary relation. The connectedne
Style APA, Harvard, Vancouver, ISO itp.
4

Zhuchok, A. V. "The least dimonoid congruences on relatively free trioids." Matematychni Studii 57, no. 1 (2022): 23–31. http://dx.doi.org/10.30970/ms.57.1.23-31.

Pełny tekst źródła
Streszczenie:
When Loday and Ronco studied ternary planar trees, they introduced types of algebras,called trioids and trialgebras. A trioid is a nonempty set equipped with three binary associativeoperations satisfying additional eight axioms relating these operations, while a trialgebra is justa linear analog of a trioid. If all operations of a trioid (trialgebra) coincide, we obtain the notionof a semigroup (associative algebra), and if two concrete operations of a trioid (trialgebra)coincide, we obtain the notion of a dimonoid (dialgebra) and so, trioids (trialgebras) are ageneralization of semigroups (as
Style APA, Harvard, Vancouver, ISO itp.
5

Stachó, Lászlo L., and Wend Werner. "On non-commutative Minkowski spheres." Analele Universitatii "Ovidius" Constanta - Seria Matematica 20, no. 2 (2012): 159–70. http://dx.doi.org/10.2478/v10309-012-0047-y.

Pełny tekst źródła
Streszczenie:
Abstract The purpose of the following is to try to make sense of the stereo- graphic projection in a non-commutative setup. To this end, we consider the open unit ball of a ternary ring of operators, which naturally comes equipped with a non-commutative version of a hyperbolic metric and ask for a manifold onto which the open unit ball can be mapped so that one might think of this situation as providing a noncommutative analog to mapping the open disk of complex numbers onto the hyperboloid in three space, equipped with the restriction of the Minkowskian metric. We also obtain a related result
Style APA, Harvard, Vancouver, ISO itp.
6

Keshavarz, Vahid, and Sedigheh Jahedi. "Orthogonally C ∗ -Ternary Jordan Homomorphisms and Jordan Derivations: Solution and Stability." Journal of Mathematics 2022 (December 26, 2022): 1–7. http://dx.doi.org/10.1155/2022/3482254.

Pełny tekst źródła
Streszczenie:
In this work, by using some orthogonally fixed point theorem, we prove the stability and hyperstability of orthogonally C ∗ -ternary Jordan homomorphisms between C ∗ -ternary Banach algebras and orthogonally C ∗ -ternary Jordan derivations of some functional equation on C ∗ -ternary Banach algebras.
Style APA, Harvard, Vancouver, ISO itp.
7

GHARETAPEH, S. KABOLI, MADJID ESHAGHI GORDJI, M. B. GHAEMI, and E. RASHIDI. "TERNARY JORDAN HOMOMORPHISMS IN C∗ -TERNARY ALGEBRAS." Journal of Nonlinear Sciences and Applications 04, no. 01 (2011): 1–10. http://dx.doi.org/10.22436/jnsa.004.01.01.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

GORDJI, M. ESHAGHI, R. KHODABAKHSH, and H. KHODAEI. "ON APPROXIMATE n-ARY DERIVATIONS." International Journal of Geometric Methods in Modern Physics 08, no. 03 (2011): 485–500. http://dx.doi.org/10.1142/s0219887811005245.

Pełny tekst źródła
Streszczenie:
C. Park et al. proved the stability of homomorphisms and derivations in Banach algebras, Banach ternary algebras, C*-algebras, Lie C*-algebras and C*-ternary algebras. In this paper, we improve and generalize some results concerning derivations. We first introduce the following generalized Jensen functional equation [Formula: see text] and using fixed point methods, we prove the stability of n-ary derivations and n-ary Jordan derivations in n-ary Banach algebras. Secondly, we study this functional equation with *-n-ary derivations in C*-n-ary algebras.
Style APA, Harvard, Vancouver, ISO itp.
9

Savadkouhi, M. Bavand, M. Eshaghi Gordji, J. M. Rassias, and N. Ghobadipour. "Approximate ternary Jordan derivations on Banach ternary algebras." Journal of Mathematical Physics 50, no. 4 (2009): 042303. http://dx.doi.org/10.1063/1.3093269.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kaygorodov, Ivan, Alexander Pozhidaev, and Paulo Saraiva. "On a ternary generalization of Jordan algebras." Linear and Multilinear Algebra 67, no. 6 (2018): 1074–102. http://dx.doi.org/10.1080/03081087.2018.1443426.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Ternary Jordan algebra"

1

Hajjaji, Atef. "Étude des opérateurs de Rota-Baxter relatifs sur les algèbres ternaires de type Lie et Jordan." Electronic Thesis or Diss., Mulhouse, 2024. http://www.theses.fr/2024MULH7172.

Pełny tekst źródła
Streszczenie:
L'objectif de cette thèse est d'étudier les opérateurs de Rota-Baxter relatifs sur les algèbres ternaires de type Lie et de type Jordan. L'étude porte sur leur structure, leur cohomologie, leurs déformations et leur lien avec les équations de Yang-Baxter. Ce travail est divisé en trois parties. La première partie est consacrée à l'étude de l'algèbre de contrôle des systèmes triples de Lie, et à son application à la théorie existante de la cohomologie. De plus, nous introduisons la notion d'opérateur de Rota-Baxter relatif sur les systèmes triples de Lie et construisons une 3-algèbre de Lie com
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Ternary Jordan algebra"

1

Gordji, Madjid Eshaghi, N. Ghobadipour, A. Ebadian, M. Bavand Savadkouhi, and Choonkil Park. "Approximate Ternary Jordan Homomorphisms on Banach Ternary Algebras." In Springer Optimization and Its Applications. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3498-6_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Gordji, Madjid Eshaghi, and Vahid Keshavarz. "Hyperstability of Ternary Jordan Homomorphisms on Unital Ternary C*-Algebras." In Series on Computers and Operations Research. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811261572_0011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!