Artykuły w czasopismach na temat „Terrestrial ice loss”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Terrestrial ice loss”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Spada, G., J. L. Bamber, and R. T. W. L. Hurkmans. "The gravitationally consistent sea-level fingerprint of future terrestrial ice loss." Geophysical Research Letters 40, no. 3 (2013): 482–86. https://doi.org/10.5281/zenodo.6996.
Pełny tekst źródłaSpada, G., J. L. Bamber, and R. T. W. L. Hurkmans. "The gravitationally consistent sea-level fingerprint of future terrestrial ice loss." Geophysical Research Letters 40, no. 3 (2013): 482–86. http://dx.doi.org/10.1029/2012gl053000.
Pełny tekst źródłaTsuji, Masaharu, Warwick F. Vincent, Yukiko Tanabe, and Masaki Uchida. "Glacier Retreat Results in Loss of Fungal Diversity." Sustainability 14, no. 3 (2022): 1617. http://dx.doi.org/10.3390/su14031617.
Pełny tekst źródłaBrun, Fanny, Patrick Wagnon, Etienne Berthier, et al. "Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya." Cryosphere 12, no. 11 (2018): 3439–57. http://dx.doi.org/10.5194/tc-12-3439-2018.
Pełny tekst źródłaJenkins, Deborah A., Nicolas Lecomte, James A. Schaefer, et al. "Loss of connectivity among island-dwelling Peary caribou following sea ice decline." Biology Letters 12, no. 9 (2016): 20160235. http://dx.doi.org/10.1098/rsbl.2016.0235.
Pełny tekst źródłaBargagli, R. "Terrestrial ecosystems of the Antarctic Peninsula and their responses to climate change and anthropogenic impacts." Ukrainian Antarctic Journal, no. 2 (December 2020): 84–97. http://dx.doi.org/10.33275/1727-7485.2.2020.656.
Pełny tekst źródłaBRUN, FANNY, PASCAL BURI, EVAN S. MILES, et al. "Quantifying volume loss from ice cliffs on debris-covered glaciers using high-resolution terrestrial and aerial photogrammetry." Journal of Glaciology 62, no. 234 (2016): 684–95. http://dx.doi.org/10.1017/jog.2016.54.
Pełny tekst źródłaWalter, Andrea, Martin P. Lüthi, and Andreas Vieli. "Calving event size measurements and statistics of Eqip Sermia, Greenland, from terrestrial radar interferometry." Cryosphere 14, no. 3 (2020): 1051–66. http://dx.doi.org/10.5194/tc-14-1051-2020.
Pełny tekst źródłaWieber, Corina, Lasse Z. Jensen, Leendert Vergeynst, et al. "Terrestrial runoff is an important source of biological ice-nucleating particles in Arctic marine systems." Atmospheric Chemistry and Physics 25, no. 6 (2025): 3327–46. https://doi.org/10.5194/acp-25-3327-2025.
Pełny tekst źródłaCuzzone, Joshua K., Nicolás E. Young, Mathieu Morlighem, Jason P. Briner, and Nicole-Jeanne Schlegel. "Simulating the Holocene deglaciation across a marine-terminating portion of southwestern Greenland in response to marine and atmospheric forcings." Cryosphere 16, no. 6 (2022): 2355–72. http://dx.doi.org/10.5194/tc-16-2355-2022.
Pełny tekst źródłaSeo, Ki-Weon, Dongryeol Ryu, Taehwan Jeon, et al. "Abrupt sea level rise and Earth’s gradual pole shift reveal permanent hydrological regime changes in the 21st century." Science 387, no. 6741 (2025): 1408–13. https://doi.org/10.1126/science.adq6529.
Pełny tekst źródłaLÓPEZ-MORENO, J. I., E. ALONSO-GONZÁLEZ, O. MONSERRAT, et al. "Ground-based remote-sensing techniques for diagnosis of the current state and recent evolution of the Monte Perdido Glacier, Spanish Pyrenees." Journal of Glaciology 65, no. 249 (2018): 85–100. http://dx.doi.org/10.1017/jog.2018.96.
Pełny tekst źródłaGauthier, F., M. Montagnat, J. Weiss, M. Allard, and B. Hétu. "Ice cascade growth and decay: a thermodynamic approach." Journal of Glaciology 59, no. 215 (2013): 507–23. http://dx.doi.org/10.3189/2013jog12j206.
Pełny tekst źródłaVincent, Warwick F., Julia Boike, Victoria R. Buschman, et al. "Terrestrial geosystems, ecosystems, and human systems in the fast-changing Arctic: research themes and connections to the Arctic Ocean." Arctic Science 9, no. 2 (2023): 258–65. http://dx.doi.org/10.1139/as-2022-0051.
Pełny tekst źródłaVoordendag, Annelies, Rainer Prinz, Lilian Schuster, and Georg Kaser. "Brief communication: The Glacier Loss Day as an indicator of a record-breaking negative glacier mass balance in 2022." Cryosphere 17, no. 8 (2023): 3661–65. http://dx.doi.org/10.5194/tc-17-3661-2023.
Pełny tekst źródłaMarshall, John E. A., Jon Lakin, Ian Troth, and Sarah M. Wallace-Johnson. "UV-B radiation was the Devonian-Carboniferous boundary terrestrial extinction kill mechanism." Science Advances 6, no. 22 (2020): eaba0768. http://dx.doi.org/10.1126/sciadv.aba0768.
Pełny tekst źródłaZurbuchen, Julie, and Alexander R. Simms. "Late Holocene ice-mass changes recorded in a relative sea-level record from Joinville Island, Antarctica." Geology 47, no. 11 (2019): 1064–68. http://dx.doi.org/10.1130/g46649.1.
Pełny tekst źródłaDeser, Clara, Robert Tomas, Michael Alexander, and David Lawrence. "The Seasonal Atmospheric Response to Projected Arctic Sea Ice Loss in the Late Twenty-First Century." Journal of Climate 23, no. 2 (2010): 333–51. http://dx.doi.org/10.1175/2009jcli3053.1.
Pełny tekst źródłaLu, Peng, Xiaowei Cao, Guoyu Li, et al. "Mass and Heat Balance of a Lake Ice Cover in the Central Asian Arid Climate Zone." Water 12, no. 10 (2020): 2888. http://dx.doi.org/10.3390/w12102888.
Pełny tekst źródłaMudryk, Lawrence R., Chris Derksen, Stephen Howell, et al. "Canadian snow and sea ice: historical trends and projections." Cryosphere 12, no. 4 (2018): 1157–76. http://dx.doi.org/10.5194/tc-12-1157-2018.
Pełny tekst źródłaWoodroffe, Sarah A., Leanne M. Wake, Kristian K. Kjeldsen, Natasha L. M. Barlow, Antony J. Long, and Kurt H. Kjær. "Missing sea level rise in southeastern Greenland during and since the Little Ice Age." Climate of the Past 19, no. 8 (2023): 1585–606. http://dx.doi.org/10.5194/cp-19-1585-2023.
Pełny tekst źródłaKenner, R., M. Phillips, C. Danioth, C. Denier, P. Thee, and A. Zgraggen. "Investigation of rock and ice loss in a recently deglaciated mountain rock wall using terrestrial laser scanning: Gemsstock, Swiss Alps." Cold Regions Science and Technology 67, no. 3 (2011): 157–64. http://dx.doi.org/10.1016/j.coldregions.2011.04.006.
Pełny tekst źródłaSu, Liang, Jian Ren, Marie-Alexandrine Sicre, et al. "Changing sources and burial of organic carbon in the Chukchi Sea sediments with retreating sea ice over recent centuries." Climate of the Past 19, no. 7 (2023): 1305–20. http://dx.doi.org/10.5194/cp-19-1305-2023.
Pełny tekst źródłaHastenrath, Stefan, and Alcides Ames. "Recession of Yanamarey Glacier in Cordillera Blanca, Peru, during the 20th century." Journal of Glaciology 41, no. 137 (1995): 191–96. http://dx.doi.org/10.1017/s0022143000017883.
Pełny tekst źródłaSimon, Karen M., Riccardo E. M. Riva, Marcel Kleinherenbrink, and Thomas Frederikse. "The glacial isostatic adjustment signal at present day in northern Europe and the British Isles estimated from geodetic observations and geophysical models." Solid Earth 9, no. 3 (2018): 777–95. http://dx.doi.org/10.5194/se-9-777-2018.
Pełny tekst źródłaPotapov, Alexey, Dmitry Semenov, Cornelia Jäger, and Thomas Henning. "Formation of CO2 Driven by Photochemistry of Water Ice Mixed with Carbon Grains." Astrophysical Journal 954, no. 2 (2023): 167. http://dx.doi.org/10.3847/1538-4357/acebcc.
Pełny tekst źródłaHastenrath, Stefan, and Alcides Ames. "Recession of Yanamarey Glacier in Cordillera Blanca, Peru, during the 20th century." Journal of Glaciology 41, no. 137 (1995): 191–96. http://dx.doi.org/10.3189/s0022143000017883.
Pełny tekst źródłaLópez-Moreno, J. I., J. Revuelto, I. Rico, et al. "Accelerated wastage of the Monte Perdido Glacier in the Spanish Pyrenees during recent stationary climatic conditions." Cryosphere Discussions 9, no. 5 (2015): 5021–51. http://dx.doi.org/10.5194/tcd-9-5021-2015.
Pełny tekst źródłavan Dongen, Eef, Guillaume Jouvet, Andrea Walter, et al. "Tides modulate crevasse opening prior to a major calving event at Bowdoin Glacier, Northwest Greenland." Journal of Glaciology 66, no. 255 (2019): 113–23. http://dx.doi.org/10.1017/jog.2019.89.
Pełny tekst źródłaStrobel, Darrell F. "Comparative Planetary Atmospheres of the Galilean Satellites." Highlights of Astronomy 13 (2005): 894–95. http://dx.doi.org/10.1017/s1539299600017433.
Pełny tekst źródłaMerkel, Benjamin, and Jon Aars. "Shifting polar bear Ursus maritimus denning habitat availability in the European Arctic." Polar Biology 45, no. 3 (2022): 481–90. http://dx.doi.org/10.1007/s00300-022-03016-5.
Pełny tekst źródłaMcFarlin, Jamie M., Yarrow Axford, Magdalena R. Osburn, Meredith A. Kelly, Erich C. Osterberg, and Lauren B. Farnsworth. "Pronounced summer warming in northwest Greenland during the Holocene and Last Interglacial." Proceedings of the National Academy of Sciences 115, no. 25 (2018): 6357–62. http://dx.doi.org/10.1073/pnas.1720420115.
Pełny tekst źródłaDinkelacker, Stephen A., Jon P. Costanzo, John B. Iverson, and Richard E. Lee, Jr. "Cold-hardiness and dehydration resistance of hatchling Blanding's turtles (Emydoidea blandingii): implications for overwintering in a terrestrial habitat." Canadian Journal of Zoology 82, no. 4 (2004): 594–600. http://dx.doi.org/10.1139/z04-027.
Pełny tekst źródłaBromley, Gordon R. M., Greg Balco, Margaret S. Jackson, Allie Balter-Kennedy, and Holly Thomas. "East Antarctic Ice Sheet variability in the central Transantarctic Mountains since the mid Miocene." Climate of the Past 21, no. 1 (2025): 145–60. https://doi.org/10.5194/cp-21-145-2025.
Pełny tekst źródłaGísladóttir, Guðrún, Egill Erlendsson, Rattan Lal, and Jerry Bigham. "Erosional Effects on Terrestrial Resources over the last Millennium in Reykjanes, Southwest Iceland." Quaternary Research 73, no. 1 (2010): 20–32. http://dx.doi.org/10.1016/j.yqres.2009.09.007.
Pełny tekst źródłaKudryavtseva, Elena, Marina Kravchishina, Larisa Pautova, et al. "Sea Ice as a Factor of Primary Production in the European Arctic: Phytoplankton Size Classes and Carbon Fluxes." Journal of Marine Science and Engineering 11, no. 11 (2023): 2131. http://dx.doi.org/10.3390/jmse11112131.
Pełny tekst źródłaTęgowski, Jarosław, Oskar Glowacki, Michał Ciepły, et al. "Monitoring glacier calving using underwater sound." Cryosphere 17, no. 10 (2023): 4447–61. http://dx.doi.org/10.5194/tc-17-4447-2023.
Pełny tekst źródłaWehrlé, Adrien, Martin P. Lüthi, Andrea Walter, Guillaume Jouvet, and Andreas Vieli. "Automated detection and analysis of surface calving waves with a terrestrial radar interferometer at the front of Eqip Sermia, Greenland." Cryosphere 15, no. 12 (2021): 5659–74. http://dx.doi.org/10.5194/tc-15-5659-2021.
Pełny tekst źródłaCluett, Allison A., and Elizabeth K. Thomas. "Summer warmth of the past six interglacials on Greenland." Proceedings of the National Academy of Sciences 118, no. 20 (2021): e2022916118. http://dx.doi.org/10.1073/pnas.2022916118.
Pełny tekst źródłaWangner, David J., Anne E. Jennings, Flor Vermassen, et al. "A 2000-year record of ocean influence on Jakobshavn Isbræ calving activity, based on marine sediment cores." Holocene 28, no. 11 (2018): 1731–44. http://dx.doi.org/10.1177/0959683618788701.
Pełny tekst źródłaOliver, James S., and Russell W. Graham. "A catastrophic kill of ice-trapped coots: time-averaged versus scavenger-specific disarticulation patterns." Paleobiology 20, no. 2 (1994): 229–44. http://dx.doi.org/10.1017/s0094837300012707.
Pełny tekst źródłaMatsuoka, Tatsuomi, Yoichiro Sogame, Rikiya Nakamura, Yuya Hasegawa, Mikihiko Arikawa, and Futoshi Suizu. "Antifreeze Water-Rich Dormant Cysts of the Terrestrial Ciliate Colpoda cucullus Nag-1 at −65 ℃: Possible Involvement of Ultra-Antifreeze Polysaccharides." Acta Protozoologica 59, no. 3-4 (2020): 141–47. http://dx.doi.org/10.4467/16890027ap.20.011.13266.
Pełny tekst źródłaVincent, Christian, Patrick Wagnon, Joseph M. Shea, et al. "Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal." Cryosphere 10, no. 4 (2016): 1845–58. http://dx.doi.org/10.5194/tc-10-1845-2016.
Pełny tekst źródłaDou, Tingfeng, Cunde Xiao, Jiping Liu, et al. "A key factor initiating surface ablation of Arctic sea ice: earlier and increasing liquid precipitation." Cryosphere 13, no. 4 (2019): 1233–46. http://dx.doi.org/10.5194/tc-13-1233-2019.
Pełny tekst źródłaBlock, William. "Water or Ice? — the Challenge for Invertebrate Cold Survival." Science Progress 86, no. 1-2 (2003): 77–101. http://dx.doi.org/10.3184/003685003783238680.
Pełny tekst źródłaBamber, Jonathan L. "A digital elevation model of the Antarctic ice sheet derived from ERS-1 altimeter data and comparison with terrestrial measurements." Annals of Glaciology 20 (1994): 48–54. http://dx.doi.org/10.3189/1994aog20-1-48-54.
Pełny tekst źródłaBamber, Jonathan L. "A digital elevation model of the Antarctic ice sheet derived from ERS-1 altimeter data and comparison with terrestrial measurements." Annals of Glaciology 20 (1994): 48–54. http://dx.doi.org/10.1017/s0260305500016220.
Pełny tekst źródłaKneib, Marin, Evan S. Miles, Pascal Buri, et al. "Sub-seasonal variability of supraglacial ice cliff melt rates and associated processes from time-lapse photogrammetry." Cryosphere 16, no. 11 (2022): 4701–25. http://dx.doi.org/10.5194/tc-16-4701-2022.
Pełny tekst źródłaStine, Jonathan M. G., Joshua M. Feinberg, Adam K. Huttenlocker, et al. "Paleozoic Equatorial Records of Melting Ice Ages (PERMIA): calibrating the pace of paleotropical environmental and ecological change during Earth's previous icehouse." Scientific Drilling 33, no. 2 (2024): 109–28. http://dx.doi.org/10.5194/sd-33-109-2024.
Pełny tekst źródłaHe, Panxing, Zongjiu Sun, Zhiming Han, et al. "Divergent Trends of Water Storage Observed via Gravity Satellite across Distinct Areas in China." Water 12, no. 10 (2020): 2862. http://dx.doi.org/10.3390/w12102862.
Pełny tekst źródła