Gotowa bibliografia na temat „Theorem proving”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Theorem proving”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Theorem proving"

1

Gan, Wenbin, Xinguo Yu, Ting Zhang, and Mingshu Wang. "Automatically Proving Plane Geometry Theorems Stated by Text and Diagram." International Journal of Pattern Recognition and Artificial Intelligence 33, no. 07 (2019): 1940003. http://dx.doi.org/10.1142/s0218001419400032.

Pełny tekst źródła
Streszczenie:
This paper presents an algorithm for proving plane geometry theorems stated by text and diagram in a complementary way. The problem of proving plane geometry theorems involves two challenging subtasks, being theorem understanding and theorem proving. This paper proposes to consider theorem understanding as a problem of extracting relations from text and diagram. A syntax–semantics (S2) model method is proposed to extract the geometric relations from theorem text, and a diagram mining method is proposed to extract geometry relations from diagram. Then, a procedure is developed to obtain a set o
Style APA, Harvard, Vancouver, ISO itp.
2

Stojanović-Đurđević, Sana, Andrija Urošević, and Filip Marić. "Improving mathematical proving skills through interactive theorem proving." Journal of Educational Studies in Mathematics and Computer Science 1, no. 2 (2024): 37–49. https://doi.org/10.5937/jesmac2402037s.

Pełny tekst źródła
Streszczenie:
Understanding and constructing proofs of mathematical theorems is a fundamental component of mastering mathematics and developing the logical apparatus. In addition, the theorems in mathematical textbooks are often only understandable through their proofs. However, students sometimes lack the precision needed to write detailed proofs and the understanding of basic proving concepts. In this paper, we propose the use of interactive theorem provers by math teachers with the goal of improving students' mathematical proving skills and understanding of logical rules. This approach utilizes feedback
Style APA, Harvard, Vancouver, ISO itp.
3

Crouse, Maxwell, Ibrahim Abdelaziz, Bassem Makni, et al. "A Deep Reinforcement Learning Approach to First-Order Logic Theorem Proving." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 7 (2021): 6279–87. http://dx.doi.org/10.1609/aaai.v35i7.16780.

Pełny tekst źródła
Streszczenie:
Automated theorem provers have traditionally relied on manually tuned heuristics to guide how they perform proof search. Deep reinforcement learning has been proposed as a way to obviate the need for such heuristics, however, its deployment in automated theorem proving remains a challenge. In this paper we introduce TRAIL, a system that applies deep reinforcement learning to saturation-based theorem proving. TRAIL leverages (a) a novel neural representation of the state of a theorem prover and (b) a novel characterization of the inference selection process in terms of an attention-based action
Style APA, Harvard, Vancouver, ISO itp.
4

Xiao, Da, Yue Fei Zhu, Sheng Li Liu, Dong Xia Wang, and You Qiang Luo. "Digital Hardware Design Formal Verification Based on HOL System." Applied Mechanics and Materials 716-717 (December 2014): 1382–86. http://dx.doi.org/10.4028/www.scientific.net/amm.716-717.1382.

Pełny tekst źródła
Streszczenie:
This article selects HOL theorem proving systems for hardware Trojan detection and gives the symbol and meaning of theorem proving systems, and then introduces the symbol table, item and the meaning of HOL theorem proving systems. In order to solve the theorem proving the application of the system in hardware Trojan detection requirements, this article analyses basic hardware Trojan detection methods which applies for theorem proving systems and introduces the implementation methods and process of theorem proving about hardware Trojan detection.
Style APA, Harvard, Vancouver, ISO itp.
5

Lu, Jian, and Qi Wan. "Lagrange's Mean Value Theorem and Taylor's Theorem and Their Applications." Journal of Education and Culture Studies 8, no. 3 (2024): p42. http://dx.doi.org/10.22158/jecs.v8n3p42.

Pełny tekst źródła
Streszczenie:
Lagrange's mean value theorem and Taylor's theorem are two important and widely used formulas in calculus courses. In this paper, we introduce the method for proving Lagrange's mean value theorem and Taylor's theorem using Rolle's theorem, and the application of these two theorems in estimating the value of integrals, determining the concavity and convexity of functions, and solving the limits of functions.
Style APA, Harvard, Vancouver, ISO itp.
6

Yadav, Aanand Kumar. "An Axiomatic Approach to Prove the Converse of Bayes’ Theorem in Probability." Orchid Academia Siraha 3, no. 1 (2024): 79–94. https://doi.org/10.3126/oas.v3i1.78106.

Pełny tekst źródła
Streszczenie:
The converse of Bayes' theorem, have been proved using axiomatic approach to probability. This approach to probability utilizes the relations and theorems of set theory. Simply presentation of the converse of Bayes' theorem has been possible due to the correspondence theorem in set theory. This theorem is seen to be more applicable in the proof of Bayes' theorem and its converse. So at first, the correspondence theorem of set theory with its proof has been presented here and then has been applied to prove the Bayes' theorem and its converse. Some important applications of correspondence theore
Style APA, Harvard, Vancouver, ISO itp.
7

Perron, Steven. "Examining Fragments of the Quantified Propositional Calculus." Journal of Symbolic Logic 73, no. 3 (2008): 1051–80. http://dx.doi.org/10.2178/jsl/1230396765.

Pełny tekst źródła
Streszczenie:
AbstractWhen restricted to proving formulas, the quantified propositional proof system is closely related to the theorems of Buss's theory . Namely, has polynomial-size proofs of the translations of theorems of , and proves that is sound. However, little is known about when proving more complex formulas. In this paper, we prove a witnessing theorem for similar in style to the KPT witnessing theorem for . This witnessing theorem is then used to show that proves is sound with respect to formulas. Note that unless the polynomial-time hierarchy collapses is the weakest theory in the S2 hierarchy f
Style APA, Harvard, Vancouver, ISO itp.
8

Bahodirovich, Hojiyev Dilmurodjon, Muhammadjonov Akbarshoh Akramjon Og`Li Og`Li, Muzaffarova Dilshoda Botirjon Qizi, Ibrohimjonov Islombek Ilhomjon O`G`Li, and Ahmadjonova Musharrafxon Dilmurod Qizi. "About One Theorem Of 2x2 Jordan Blocks Matrix." American Journal of Applied sciences 03, no. 06 (2021): 28–33. http://dx.doi.org/10.37547/tajas/volume03issue06-05.

Pełny tekst źródła
Streszczenie:
In this paper, we have studied one theorem on 2x2 Jordan blocks matrix. There are 4 important statements which is used for proving other theorems such as in the differensial equations. In proving these statements, we have used mathematic induction, norm of matrix, Taylor series of
Style APA, Harvard, Vancouver, ISO itp.
9

Jupri, Al, Siti Fatimah, and Dian Usdiyana. "Dampak Perkuliahan Geometri Pada Penalaran Deduktif Mahasiswa: Kasus Pembelajaran Teorema Ceva." AKSIOMA : Jurnal Matematika dan Pendidikan Matematika 11, no. 1 (2020): 93–104. http://dx.doi.org/10.26877/aks.v11i1.6011.

Pełny tekst źródła
Streszczenie:
Geometry is one of branches of mathematics that can develop deductive thinking ability for anyone, including students of prospective mathematics teachers, who learning it. This deductive thinking ability is needed by prospective mathematics teachers for their future careers as mathematics educators. This research therefore aims to investigate the influence of the learning process of a geometry course toward deductive reasoning ability of students of prospective mathematics teachers. To do so, this qualitative research was carried out through an observation of the learning process and assessmen
Style APA, Harvard, Vancouver, ISO itp.
10

Wang, Dongming. "A Method for Proving Theorems in Differential Geometry and Mechanics." JUCS - Journal of Universal Computer Science 1, no. (9) (1995): 658–73. https://doi.org/10.3217/jucs-001-09-0658.

Pełny tekst źródła
Streszczenie:
A zero decomposition algorithm is presented and used to devise a method for proving theorems automatically in differential geometry and mechanics. The method has been implemented and its practical efficiency is demonstrated by several non-trivial examples including Bertrand s theorem, Schell s theorem and Kepler-Newton s laws.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Theorem proving"

1

Ballarin, Clemens Michael. "Computer algebra and theorem proving." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624429.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ji, Kailiang. "Model checking and theorem proving." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC250.

Pełny tekst źródła
Streszczenie:
Le model checking est une technique de vérification automatique de propriétés de correction de systèmes finis. Normalement, les outils de model checking ont deux caractéristiques remarquables : ils sont automatisés et ils produisent un contre-exemple si le système ne satisfait pas la propriété. La Déduction Modulo est une reformulation de la logique des prédicats où certains axiomes---possiblement tous---sont remplacés par des règles de réécriture. Le but de cette dissertation est de donner un encodage de propriétés temporelles exprimées en CTL en des formules du premier ordre, en exprimant l'
Style APA, Harvard, Vancouver, ISO itp.
3

Kakkad, Aman. "Machine Learning for Automated Theorem Proving." Scholarly Repository, 2009. http://scholarlyrepository.miami.edu/oa_theses/223.

Pełny tekst źródła
Streszczenie:
Developing logic in machines has always been an area of concern for scientists. Automated Theorem Proving is a field that has implemented the concept of logical consequence to a certain level. However, if the number of available axioms is very large then the probability of getting a proof for a conjecture in a reasonable time limit can be very small. This is where the ability to learn from previously proved theorems comes into play. If we see in our own lives, whenever a new situation S(NEW) is encountered we try to recollect all old scenarios S(OLD) in our neural system similar to the new one
Style APA, Harvard, Vancouver, ISO itp.
4

Folkler, Andreas. "Automated Theorem Proving : Resolution vs. Tableaux." Thesis, Blekinge Tekniska Högskola, Institutionen för programvaruteknik och datavetenskap, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-5531.

Pełny tekst źródła
Streszczenie:
The purpose of this master thesis was to investigate which of the two methods, resolution and tableaux, that is the most appropriate for automated theorem proving. This was done by implementing an automated theorem prover, comparing and documenting implementation problems, and measuring proving efficiency. In this thesis, I conclude that the resolution method might be more suitable for an automated theorem prover than tableaux, in the aspect of ease of implementation. Regarding the efficiency, the test results indicate that resolution is the better choice.<br>Syftet med detta magisterarbete va
Style APA, Harvard, Vancouver, ISO itp.
5

Amjad, Hasan. "Combining model checking and theorem proving." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616074.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Bridge, J. P. "Machine learning and automated theorem proving." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596901.

Pełny tekst źródła
Streszczenie:
Computer programs to find formal proofs of theorems were originally designed as tools for mathematicians, but modern applications are much more diverse. In particular they are used in formal methods to verify software and hardware designs to prevent errors being introduced into systems. Despite this, the high level of human expertise required in their use means that theorem proving tools are not widely used by non-specialists. The work described in this dissertation addresses one aspect of this problem, that of heuristic selection. In theory theorem provers should be automatic; in practice the
Style APA, Harvard, Vancouver, ISO itp.
7

Hou, Tie. "Interactive theorem proving and program extraction." Thesis, Swansea University, 2014. https://cronfa.swan.ac.uk/Record/cronfa42845.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Syme, Donald Robert. "Declarative theorem proving for operational semantics." Thesis, University of Cambridge, 1999. https://www.repository.cam.ac.uk/handle/1810/252967.

Pełny tekst źródła
Streszczenie:
This dissertation is concerned with techniques for formally checking properties of systems that are described by operational semantics. We describe innovations and tools for tackling this problem, and a large case study in the application of these tools. The innovations centre on the notion of "declarative theorem proving", and in particular techniques for declarative proof description. We define what we mean by this, assess its costs and benefits, and describe the impact of this approach with respect to four fundamental areas of theorem prover design: specification, proof description, automat
Style APA, Harvard, Vancouver, ISO itp.
9

Harrison, John Robert. "Theorem proving with the real numbers." Thesis, University of Cambridge, 1996. https://www.repository.cam.ac.uk/handle/1810/265488.

Pełny tekst źródła
Streszczenie:
This thesis discusses the use of the real numbers in theorem proving. Typically, theorem provers only support a few 'discrete' datatypes such as the natural numbers. However the availability of the real numbers opens up many interesting and important application areas, such as the verification of floating point hardware and hybrid systems. It also allows the formalization of many more branches of classical mathematics, which is particularly relevant for attempts to inject more rigour into computer algebra systems. Our work is conducted in a version of the HOL theorem prover. We describe the ri
Style APA, Harvard, Vancouver, ISO itp.
10

Donato, Pablo. "Deep Inference for Graphical Theorem Proving." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX015.

Pełny tekst źródła
Streszczenie:
Les assistants de preuve sont des logiciels permettant de vérifier rigoureusement des raisonnements mathématiques. Ils peuvent être généraux (comme Coq, Lean, Isabelle...) ou plus spécialisés (comme EasyCrypt). Ils permettent un niveau de précision qui certifie qu'aucune erreur ne peut se produire, mais restent difficiles d'utilisation. Nous proposons un nouveau paradigme de construction de preuves formelles par actions effectuées dans une interface graphique, afin de permettre une utilisation plus confortable et plus intuitive. Intitulé Proof-by-Action, notre paradigme s'appuie sur des princi
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Książki na temat "Theorem proving"

1

Beringer, Lennart, and Amy Felty, eds. Interactive Theorem Proving. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32347-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Bibel, Wolfgang. Automated Theorem Proving. Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-322-90102-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ayala-Rincón, Mauricio, and César A. Muñoz, eds. Interactive Theorem Proving. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66107-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Newborn, Monty. Automated Theorem Proving. Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0089-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Klein, Gerwin, and Ruben Gamboa, eds. Interactive Theorem Proving. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08970-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Blazy, Sandrine, Christine Paulin-Mohring, and David Pichardie, eds. Interactive Theorem Proving. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39634-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kaufmann, Matt, and Lawrence C. Paulson, eds. Interactive Theorem Proving. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14052-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

van Eekelen, Marko, Herman Geuvers, Julien Schmaltz, and Freek Wiedijk, eds. Interactive Theorem Proving. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22863-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Urban, Christian, and Xingyuan Zhang, eds. Interactive Theorem Proving. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22102-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Avigad, Jeremy, and Assia Mahboubi, eds. Interactive Theorem Proving. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94821-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Theorem proving"

1

Abadi, Martín, and Zohar Manna. "Modal theorem proving." In 8th International Conference on Automated Deduction. Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/3-540-16780-3_89.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Li, Hongbo. "Automated Theorem Proving." In Geometric Algebra with Applications in Science and Engineering. Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0159-5_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Stachniak, Zbigniew. "Theorem Proving Strategies." In Automated Reasoning Series. Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1677-7_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Lynch, Christopher. "Unsound Theorem Proving." In Computer Science Logic. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30124-0_36.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Dowek, Gilles. "Automated Theorem Proving." In Proofs and Algorithms. Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-121-9_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Bonacina, Maria Paola. "Parallel Theorem Proving." In Handbook of Parallel Constraint Reasoning. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63516-3_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Fleuriot, Jacques. "Geometry Theorem Proving." In A Combination of Geometry Theorem Proving and Nonstandard Analysis with Application to Newton’s Principia. Springer London, 2001. http://dx.doi.org/10.1007/978-0-85729-329-9_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Ahmed, Asad, Osman Hasan, Falah Awwad, and Nabil Bastaki. "Interactive Theorem Proving." In Formal Analysis of Future Energy Systems Using Interactive Theorem Proving. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78409-6_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Reif, Wolfgang, and Gerhard Schellhorn. "Theorem Proving in Large Theories." In Applied Logic Series. Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-0437-3_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Aspinall, David, and Cezary Kaliszyk. "What’s in a Theorem Name?" In Interactive Theorem Proving. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43144-4_28.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Theorem proving"

1

Lama, Vanessa, Catherine Ma, and Tirthankar Ghosal. "Benchmarking Automated Theorem Proving with Large Language Models." In Proceedings of the 1st Workshop on NLP for Science (NLP4Science). Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.nlp4science-1.18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

He, Yuhang, Jihai Zhang, Jianzhu Bao, et al. "BC-Prover: Backward Chaining Prover for Formal Theorem Proving." In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.emnlp-main.180.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Aksoy, Kubra, Adnan Rashid, Osman Hasan, and Sofiène Tahar. "Formal Analysis of Electrical Circuit Network Topologies Using Theorem Proving." In 2025 IEEE International systems Conference (SysCon). IEEE, 2025. https://doi.org/10.1109/syscon64521.2025.11014814.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Quan, Xin, Marco Valentino, Louise A. Dennis, and Andre Freitas. "Verification and Refinement of Natural Language Explanations through LLM-Symbolic Theorem Proving." In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.emnlp-main.172.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Niknafs-Kermani, Amir, Boris Konev, and Michael Fisher. "Symmetric Temporal Theorem Proving." In 2012 19th International Symposium on Temporal Representation and Reasoning (TIME). IEEE, 2012. http://dx.doi.org/10.1109/time.2012.20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Gonthier, Georges. "Combinatorics for theorem proving." In the 1st Workshop. ACM Press, 2009. http://dx.doi.org/10.1145/1735813.1735814.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Yorsh, Greta, Thomas Ball, and Mooly Sagiv. "Testing, abstraction, theorem proving." In the 2006 international symposium. ACM Press, 2006. http://dx.doi.org/10.1145/1146238.1146255.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Chen, Chiyan, and Hongwei Xi. "Combining programming with theorem proving." In the tenth ACM SIGPLAN international conference. ACM Press, 2005. http://dx.doi.org/10.1145/1086365.1086375.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Weirich, Stephanie. "Session details: Automated theorem proving." In ICFP'12: ACM SIGPLAN International Conference on Functional Programming. ACM, 2012. http://dx.doi.org/10.1145/3249893.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

"THEOREM PROVING IN THE ONTOLOGY LIFECYCLE." In International Conference on Knowledge Engineering and Ontology Development. SciTePress - Science and and Technology Publications, 2010. http://dx.doi.org/10.5220/0003076400370049.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Theorem proving"

1

Abadi, Martin, and Zohar Manna. Modal Theorem Proving,. Defense Technical Information Center, 1986. http://dx.doi.org/10.21236/ada325959.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Shankar, Natarajan. PVS Theorem Proving Enhancements. Defense Technical Information Center, 1997. http://dx.doi.org/10.21236/ada326917.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Avigad, Jeremy, and Robert Harper. Type Theory, Computation and Interactive Theorem Proving. Defense Technical Information Center, 2015. http://dx.doi.org/10.21236/ad1003773.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Bellin, Gianluigi, and Jussi Ketonen. Experiments in Automatic Theorem Proving. Defense Technical Information Center, 1986. http://dx.doi.org/10.21236/ada327449.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Archer, Myla, and Constance Heitmeyer. Human-Style Theorem Proving Using PVS. Defense Technical Information Center, 1997. http://dx.doi.org/10.21236/ada464276.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Lusk, E., and W. McCune. An entry in the 1992 Overbeek theorem-proving contest. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/6940861.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Lusk, E. L., and W. W. McCune. An entry in the 1992 Overbeek theorem-proving contest. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10114594.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Clarke, Edmund, and Xudong Zhao. Analytica - An Experiment in Combining Theorem Proving and Symbolic Computation. Defense Technical Information Center, 1992. http://dx.doi.org/10.21236/ada258656.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

McCune, W. A case study in automated theorem proving: A difficult problem about commutators. Office of Scientific and Technical Information (OSTI), 1995. http://dx.doi.org/10.2172/27057.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Wos, L., and W. McCune. Searching for fixed point combinators by using automated theorem proving: A preliminary report. Office of Scientific and Technical Information (OSTI), 1988. http://dx.doi.org/10.2172/6852789.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!