Artykuły w czasopismach na temat „Thermal and thermomechanical simulation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Thermal and thermomechanical simulation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Svotina, Victoria V., Andrey I. Mogulkin i Alexandra Y. Kupreeva. "Ion Source—Thermal and Thermomechanical Simulation". Aerospace 8, nr 7 (14.07.2021): 189. http://dx.doi.org/10.3390/aerospace8070189.
Pełny tekst źródłaZHANG, JINAO, JEREMY HILLS, YONGMIN ZHONG, BIJAN SHIRINZADEH, JULIAN SMITH i CHENGFAN GU. "TEMPERATURE-DEPENDENT THERMOMECHANICAL MODELING OF SOFT TISSUE DEFORMATION". Journal of Mechanics in Medicine and Biology 18, nr 08 (grudzień 2018): 1840021. http://dx.doi.org/10.1142/s0219519418400213.
Pełny tekst źródłaHrevtsev, O., N. Selivanova, P. Popovych, L. Poberezhny, V. Sakhno, O. Shevchuk, L. Poberezhna, I. Murovanyi, A. Hrytsanchuk i O. Romanyshyn. "Simulation of thermomechanical processes in disc brakes of wheeled vehicles". Journal of Achievements in Materials and Manufacturing Engineering 1, nr 104 (1.01.2021): 11–20. http://dx.doi.org/10.5604/01.3001.0014.8482.
Pełny tekst źródłaYamashita, Hiroki, Rohit Arora, Hiroyuki Kanazawa i Hiroyuki Sugiyama. "Reduced-order thermomechanical modeling of multibody systems using floating frame of reference formulation". Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 233, nr 3 (15.11.2018): 617–30. http://dx.doi.org/10.1177/1464419318810886.
Pełny tekst źródłaGlaspell, Aspen, Jose Angel Diosdado De la Pena, Saroj Dahal, Sandesh Neupane, Jae Joong Ryu i Kyosung Choo. "Heat Transfer and Structural Characteristics of Dissimilar Joints Joining Ti-64 and NiTi via Laser Welding". Energies 15, nr 19 (22.09.2022): 6949. http://dx.doi.org/10.3390/en15196949.
Pełny tekst źródłaBecker, Eric, Laurent Langlois, Véronique Favier i Régis Bigot. "Thermomechanical Modelling and Simulation of C38 Thixoextrusion Steel". Solid State Phenomena 217-218 (wrzesień 2014): 130–37. http://dx.doi.org/10.4028/www.scientific.net/ssp.217-218.130.
Pełny tekst źródłaBehseresht, Saeed, i Young Ho Park. "Additive Manufacturing of Composite Polymers: Thermomechanical FEA and Experimental Study". Materials 17, nr 8 (20.04.2024): 1912. http://dx.doi.org/10.3390/ma17081912.
Pełny tekst źródłaLeppänen, Anton, Asko Kumpula, Joona Vaara, Massimo Cattarinussi, Juho Könnö i Tero Frondelius. "Thermomechanical Fatigue Analysis of Cylinder Head". Rakenteiden Mekaniikka 50, nr 3 (21.08.2017): 182–85. http://dx.doi.org/10.23998/rm.64743.
Pełny tekst źródłaWang, Xiu Juan, Xiu Ting Zheng, Wei Zheng i Si Zhu Wu. "Molecular Simulation of Polycarbonate and Thermomechanical Analysis". Applied Mechanics and Materials 556-562 (maj 2014): 441–44. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.441.
Pełny tekst źródłaAlekseev, M. V., N. G. Sudobin, A. A. Kuleshov i E. B. Savenkov. "Mathematical Simulation of Thermomechanics in an Impermeable Porous Medium". Herald of the Bauman Moscow State Technical University. Series Natural Sciences, nr 4 (91) (sierpień 2020): 4–23. http://dx.doi.org/10.18698/1812-3368-2020-4-4-23.
Pełny tekst źródłaIslam, M. D., i Ger Kelly. "Thermal stress and thermomechanical simulation of embedded electronic packaging". International Journal of Nanomanufacturing 1, nr 4 (2007): 516. http://dx.doi.org/10.1504/ijnm.2007.014571.
Pełny tekst źródłaMani, Hossein, Aboozar Taherizadeh, Behzad Sadeghian, Behzad Sadeghi i Pasquale Cavaliere. "Thermal–Mechanical and Microstructural Simulation of Rotary Friction Welding Processes by Using Finite Element Method". Materials 17, nr 4 (8.02.2024): 815. http://dx.doi.org/10.3390/ma17040815.
Pełny tekst źródłaLitoš, P., M. Švantner i M. Honner. "Simulation of Strain Gauge Thermal Effects During Residual Stress Hole Drilling Measurements". Journal of Strain Analysis for Engineering Design 40, nr 7 (1.10.2005): 611–19. http://dx.doi.org/10.1243/030932405x30812.
Pełny tekst źródłaWang, Youshan, Yintao Wei, Xijin Feng i Zhenhan Yao. "Finite Element Analysis of the Thermal Characteristics and Parametric Study of Steady Rolling Tires". Tire Science and Technology 40, nr 3 (1.10.2012): 201–18. http://dx.doi.org/10.2346/tire.12.400304.
Pełny tekst źródłaDepradeux, L., i J. F. Jullien. "Experimental and numerical simulation of thermomechanical phenomena during a TIG welding process". Journal de Physique IV 120 (grudzień 2004): 697–704. http://dx.doi.org/10.1051/jp4:2004120080.
Pełny tekst źródłaPiekarska, W., M. Kubiak i Z. Saternus. "Numerical Simulation of Deformations in T-Joint Welded by the Laser Beam". Archives of Metallurgy and Materials 58, nr 4 (1.12.2013): 1391–96. http://dx.doi.org/10.2478/amm-2013-0181.
Pełny tekst źródłaTekriwal, P., i J. Mazumder. "Transient and Residual Thermal Strain-Stress Analysis of GMAW". Journal of Engineering Materials and Technology 113, nr 3 (1.07.1991): 336–43. http://dx.doi.org/10.1115/1.2903415.
Pełny tekst źródłaLurie, S. A., P. A. Belov i A. V. Volkov. "Variational formulation of thermomechanical problems". Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki 165, nr 3 (12.01.2024): 246–63. http://dx.doi.org/10.26907/2541-7746.2023.3.246-263.
Pełny tekst źródłaOsman, Ibrahim Sufian, i Nasir Ghazi Hariri. "Thermal Investigation and Optimized Design of a Novel Solar Self-Driven Thermomechanical Actuator". Sustainability 14, nr 9 (23.04.2022): 5078. http://dx.doi.org/10.3390/su14095078.
Pełny tekst źródłaSuyitno, Dmitry G. Eskin i Laurens Katgerman. "Thermal Contraction of AA5182 for Prediction of Ingot Distortions". Key Engineering Materials 306-308 (marzec 2006): 977–82. http://dx.doi.org/10.4028/www.scientific.net/kem.306-308.977.
Pełny tekst źródłaDesrayaud, Christophe. "Simplified Simulation of the Friction Stir Welding Process. Influence of the Boundary Conditions Modelling". Materials Science Forum 706-709 (styczeń 2012): 2943–49. http://dx.doi.org/10.4028/www.scientific.net/msf.706-709.2943.
Pełny tekst źródłaMa, Zhu, Changzheng Shi, Hegao Wu i Songzi Liu. "Structural Behavior of Massive Reinforced Concrete Structures Exposed to Thermomechanical Loads". Energies 15, nr 7 (6.04.2022): 2671. http://dx.doi.org/10.3390/en15072671.
Pełny tekst źródłaWang, Jun, Yingjie Xu, Weihong Zhang i Xuanchang Ren. "Thermomechanical Modeling of Amorphous Glassy Polymer Undergoing Large Viscoplastic Deformation: 3-Points Bending and Gas-Blow Forming". Polymers 11, nr 4 (10.04.2019): 654. http://dx.doi.org/10.3390/polym11040654.
Pełny tekst źródłaVemanaboina, Harinadh, Edison Gundabattini, Kaushik Kumar, Paolo Ferro i B. Sridhar Babu. "Thermal and Residual Stress Distributions in Inconel 625 Butt-Welded Plates: Simulation and Experimental Validation". Advances in Materials Science and Engineering 2021 (19.10.2021): 1–12. http://dx.doi.org/10.1155/2021/3948129.
Pełny tekst źródłaBoudjaza, Samia, Abdelmadjid Chehhat i Billel Rebai. "Time dependent thermal behavior of geothermal energy pile (GEP) for summer and winter periods using CFD analysis". STUDIES IN ENGINEERING AND EXACT SCIENCES 5, nr 2 (29.11.2024): e11283. https://doi.org/10.54021/seesv5n2-591.
Pełny tekst źródłaRODOVALHO, F. S., i M. R. S. CORRÊA. "Thermal simulation of prisms with concrete blocks in a fire situation". Revista IBRACON de Estruturas e Materiais 12, nr 3 (czerwiec 2019): 638–57. http://dx.doi.org/10.1590/s1983-41952019000300011.
Pełny tekst źródłaWang, Xiu Juan, Xiu Ting Zheng, Meng Song, Xiu Ying Zhao i Si Zhu Wu. "Thermomechanical Analysis of Poly (Bisphenol-A Carbonate) Performance and Molecular Simulation". Advanced Materials Research 781-784 (wrzesień 2013): 576–79. http://dx.doi.org/10.4028/www.scientific.net/amr.781-784.576.
Pełny tekst źródłaAli, Mahmoud, Thomas Sayet, Alain Gasser i Eric Blond. "Transient Thermo-Mechanical Analysis of Steel Ladle Refractory Linings Using Mechanical Homogenization Approach". Ceramics 3, nr 2 (2.04.2020): 171–89. http://dx.doi.org/10.3390/ceramics3020016.
Pełny tekst źródłaKunda, Sudip, Noah J. Schmelzer, Akhilesh Pedgaonkar, Jack E. Rees, Samuel D. Dunham, Charles K. C. Lieou, Justin C. M. Langbaum i Curt A. Bronkhorst. "Study of the Thermomechanical Behavior of Single-Crystal and Polycrystal Copper". Metals 14, nr 9 (22.09.2024): 1086. http://dx.doi.org/10.3390/met14091086.
Pełny tekst źródłaLi, Hui, Hanbo Zhang, Yixiong Zhang, Xiaoming Bai, Xuejiao Shao i Bingyang Wu. "Coupled Non-Ordinary State-Based Peridynamics Model for Ductile and Brittle Solids Subjected to Thermal Shocks". Applied Sciences 14, nr 16 (7.08.2024): 6927. http://dx.doi.org/10.3390/app14166927.
Pełny tekst źródłaLi, Jianwei. "Thermomechanical constitutive equations for glass and numerical simulation on automobile glass forming technology". Glass Technology: European Journal of Glass Science and Technology Part A 63, nr 4 (2022): 122–28. http://dx.doi.org/10.13036/17533546.63.4.006.
Pełny tekst źródłaKoeune, Roxane, i Jean Philippe Ponthot. "A Thermomechanical Model Dedicated to Thixoforming. Application to Semi-Solid Forming". Solid State Phenomena 192-193 (październik 2012): 269–75. http://dx.doi.org/10.4028/www.scientific.net/ssp.192-193.269.
Pełny tekst źródłaTamer, Ozan, Fabian Walter, Michael Sinapius i Markus Böl. "A Computational Geometric Parameter Optimization of the Thermomechanical Deicing Concept". Actuators 11, nr 8 (5.08.2022): 223. http://dx.doi.org/10.3390/act11080223.
Pełny tekst źródłaOlshevskiy, Alexander, Alexey Olshevskiy, Oleg Berdnikov i Chang-Wan Kim. "Finite element analysis of railway disc brake considering structural, thermal, and wear phenomena". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 226, nr 7 (15.11.2011): 1845–60. http://dx.doi.org/10.1177/0954406211428705.
Pełny tekst źródłaMarin-Montin, Jorge, Eduardo Roque, Yading Xu, Branko Šavija, Juan Carlos Serrano-Ruiz i Francisco Montero-Chacón. "Thermomechanical Performance Analysis of Novel Cement-Based Building Envelopes with Enhanced Passive Insulation Properties". Materials 15, nr 14 (15.07.2022): 4925. http://dx.doi.org/10.3390/ma15144925.
Pełny tekst źródłaKurcsics, Mark, Luzia Hahn i Peter Eberhard. "Transient Structural, Thermal and Optical Performance (STOP) Analysis with Accelerated Thermomechanical Computation". EPJ Web of Conferences 309 (2024): 03025. http://dx.doi.org/10.1051/epjconf/202430903025.
Pełny tekst źródłaVandevelde, Bart, Eric Beyne, Kouchi (G Q. ). Zhang, Jo Caers, Dirk Vandepitte i Martine Baelmans. "Parameterized Modeling of Thermomechanical Reliability for CSP Assemblies". Journal of Electronic Packaging 125, nr 4 (1.12.2003): 498–505. http://dx.doi.org/10.1115/1.1604150.
Pełny tekst źródłaNazaret, Fabien, Thierry Cutard i Olivier Barrau. "Sizing of Refractory Castable Gas-Burner Using Thermomechanical Simulations". Advances in Science and Technology 70 (październik 2010): 173–78. http://dx.doi.org/10.4028/www.scientific.net/ast.70.173.
Pełny tekst źródłaDarcourt, C., J. M. Roelandt, M. Rachik, D. Deloison i B. Journet. "Thermomechanical analysis applied to the laser beam welding simulation of aeronautical structures". Journal de Physique IV 120 (grudzień 2004): 785–92. http://dx.doi.org/10.1051/jp4:2004120091.
Pełny tekst źródłaXu, Chenglong, i Zhi Liu. "Coupled CFD-FEM Simulation of Steel Box Bridge Exposed to Fire". Advances in Civil Engineering 2022 (10.01.2022): 1–12. http://dx.doi.org/10.1155/2022/5889743.
Pełny tekst źródłaBONETTI, ELENA, PIERLUIGI COLLI i MICHEL FREMOND. "A PHASE FIELD MODEL WITH THERMAL MEMORY GOVERNED BY THE ENTROPY BALANCE". Mathematical Models and Methods in Applied Sciences 13, nr 11 (listopad 2003): 1565–88. http://dx.doi.org/10.1142/s0218202503003033.
Pełny tekst źródłaBogard, Virginie, Philippe Revel i Yannick Hetet. "Optimization of Thermomechanical Loading by the Inverse Method". Journal of Engineering Materials and Technology 129, nr 2 (26.06.2006): 207–10. http://dx.doi.org/10.1115/1.2400255.
Pełny tekst źródłaKhodakov, Alexander M., Vitaliy I. Smirnov, Viacheslav A. Sergeev i Ruslan G. Tarasov. "Modeling and analysis of temperature and thermomechanical stress distributions in a multi-chip electronic module". Radioelectronics. Nanosystems. Information Technologies. 16, nr 2 (25.04.2024): 215–22. http://dx.doi.org/10.17725/j.rensit.2024.16.215.
Pełny tekst źródłaCollins, Jeff T., Jeremy Nudell, Gary Navrotski, Zunping Liu i Patric Den Hartog. "Establishment of new design criteria for GlidCop® X-ray absorbers". Journal of Synchrotron Radiation 24, nr 2 (20.02.2017): 402–12. http://dx.doi.org/10.1107/s1600577517001734.
Pełny tekst źródłaWu, C. T., Wei Hu, Hui-Ping Wang i Hongsheng Lu. "A Robust Numerical Procedure for the Thermomechanical Flow Simulation of Friction Stir Welding Process Using an Adaptive Element-Free Galerkin Method". Mathematical Problems in Engineering 2015 (2015): 1–16. http://dx.doi.org/10.1155/2015/486346.
Pełny tekst źródłaLi, Haiwang, Dawei Zhang, Ruquan You, Yifan Zou i Song Liu. "Numerical Investigation of the Effects of the Hole Inclination Angle and Blowing Ratio on the Characteristics of Cooling and Stress in an Impingement/Effusion Cooling System". Energies 16, nr 2 (13.01.2023): 937. http://dx.doi.org/10.3390/en16020937.
Pełny tekst źródłaYuile, Adam, Erik Wiss, David Barth i Steffen Wiese. "Simulation of Mechanical Stresses in BaTiO3 Multilayer Ceramic Capacitors during Desoldering in the Rework of Electronic Assemblies Using a Framework of Computational Fluid Dynamics and Thermomechanical Models". Materials 17, nr 11 (3.06.2024): 2702. http://dx.doi.org/10.3390/ma17112702.
Pełny tekst źródłaKenzhegulov, B., Jaroslav Kultan, D. B. Alibiyev i A. Sh Kazhikenova. "Numerical modeling of thermomechanical processes in heat-resistant alloys". Bulletin of the Karaganda University. "Physics" Series 98, nr 2 (30.06.2020): 101–7. http://dx.doi.org/10.31489/2020ph2/101-107.
Pełny tekst źródłaZivkovic, Dragoljub, Dragan Milcic, Milan Banic i Pedja Milosavljevic. "Thermomechanical finite element analysis of hot water boiler structure". Thermal Science 16, suppl. 2 (2012): 387–98. http://dx.doi.org/10.2298/tsci120503177z.
Pełny tekst źródłaWang, Xinwei. "Thermal and Thermomechanical Phenomena in Picosecond Laser Copper Interaction". Journal of Heat Transfer 126, nr 3 (1.06.2004): 355–64. http://dx.doi.org/10.1115/1.1725092.
Pełny tekst źródła