Artykuły w czasopismach na temat „Thermal bubble”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Thermal bubble”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Liu, Bendong, Chenxu Ma, Jiahui Yang, Desheng Li, and Haibin Liu. "Study on the Heat Source Insulation of a Thermal Bubble-Driven Micropump with Induction Heating." Micromachines 12, no. 9 (2021): 1040. http://dx.doi.org/10.3390/mi12091040.
Pełny tekst źródłaHeller, R., R. Jacob, D. Schönberner, and M. Steffen. "Hot bubbles of planetary nebulae with hydrogen-deficient winds." Astronomy & Astrophysics 620 (December 2018): A98. http://dx.doi.org/10.1051/0004-6361/201832683.
Pełny tekst źródłaChen, Min, Kun Peng Jiang, Da Wei Jiang, Dong Dong Chen, and Yan Fang Zhao. "Thermal Bubble Nucleation in a Nanochannel: An Experiment Investigation." Applied Mechanics and Materials 597 (July 2014): 7–12. http://dx.doi.org/10.4028/www.scientific.net/amm.597.7.
Pełny tekst źródłaHung, P. K., P. H. Kien, and H. V. Hue. "Tracer Diffusion Mechanism in Amorphous Solids." Journal of Metallurgy 2011 (December 27, 2011): 1–11. http://dx.doi.org/10.1155/2011/861373.
Pełny tekst źródłaNarezo Guzman, Daniela, Tomasz Frączek, Christopher Reetz, Chao Sun, Detlef Lohse, and Guenter Ahlers. "Vapour-bubble nucleation and dynamics in turbulent Rayleigh–Bénard convection." Journal of Fluid Mechanics 795 (April 13, 2016): 60–95. http://dx.doi.org/10.1017/jfm.2016.178.
Pełny tekst źródłaTsai, Jr-Hung, and Liwei Lin. "Transient Thermal Bubble Formation on Polysilicon Micro-Resisters." Journal of Heat Transfer 124, no. 2 (2001): 375–82. http://dx.doi.org/10.1115/1.1445136.
Pełny tekst źródłaLin, Liwei, A. P. Pisano, and V. P. Carey. "Thermal Bubble Formation on Polysilicon Micro Resistors." Journal of Heat Transfer 120, no. 3 (1998): 735–42. http://dx.doi.org/10.1115/1.2824343.
Pełny tekst źródłaZeng, Binglin, Kai Leong Chong, Yuliang Wang, et al. "Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal Marangoni forces." Proceedings of the National Academy of Sciences 118, no. 23 (2021): e2103215118. http://dx.doi.org/10.1073/pnas.2103215118.
Pełny tekst źródłaVoglar, Jure. "Physical Model of a Single Bubble Growth during Nucleate Pool Boiling." Fluids 7, no. 3 (2022): 90. http://dx.doi.org/10.3390/fluids7030090.
Pełny tekst źródłaArai, S., T. Kanagawa, T. Ayukai, and T. Yatabe. "Nonlinear and dissipation effects of pressure waves in water flows containing translational bubbles with a drag force." Journal of Physics: Conference Series 2217, no. 1 (2022): 012021. http://dx.doi.org/10.1088/1742-6596/2217/1/012021.
Pełny tekst źródłaGe, Han, Kaichuang Wang, Jiawang Chen, Ronghua Zhu, Marisa Lazarus, and Dayun Yan. "Numerical Investigation of Air Entrapment Dynamics for High-Speed Thermal Spraying." Applied Sciences 12, no. 23 (2022): 12039. http://dx.doi.org/10.3390/app122312039.
Pełny tekst źródłaYan, Shaohang, Tianwei Lai, Qi Zhao, et al. "Numerical Study on Single-Bubble Contraction–Rebound Characteristics in Cryogenic Fluids." Applied Sciences 12, no. 21 (2022): 10839. http://dx.doi.org/10.3390/app122110839.
Pełny tekst źródłaGvozdić, Biljana, Elise Alméras, Varghese Mathai, et al. "Experimental investigation of heat transport in homogeneous bubbly flow." Journal of Fluid Mechanics 845 (April 20, 2018): 226–44. http://dx.doi.org/10.1017/jfm.2018.213.
Pełny tekst źródłaLeu, Tzong Shyng, and Yan Hao Liu. "Design and Fabrication of Thermocapillary Micro Bubble Pump." Advanced Materials Research 528 (June 2012): 23–26. http://dx.doi.org/10.4028/www.scientific.net/amr.528.23.
Pełny tekst źródłaGhiaasiaan, S. M., A. T. Wassel, and A. A. Pesaran. "Gas Desorption From Seawater in Open-Cycle Ocean Thermal Energy Conversion Barometric Upcomers." Journal of Solar Energy Engineering 112, no. 3 (1990): 204–15. http://dx.doi.org/10.1115/1.2930481.
Pełny tekst źródłaXin, Yalou, Yunling Jian, Hongfeng Yin, Yun Tang, Hudie Yuan, and Yuchi Liu. "The Influence of Alumina Bubbles on the Properties of Lightweight Corundum–Spinel Refractory." Materials 16, no. 17 (2023): 5908. http://dx.doi.org/10.3390/ma16175908.
Pełny tekst źródłaGago, Mauricio, Arkadi Kreter, Bernhard Unterberg, and Marius Wirtz. "Bubble Formation in ITER-Grade Tungsten after Exposure to Stationary D/He Plasma and ELM-like Thermal Shocks." Journal of Nuclear Engineering 4, no. 1 (2023): 204–12. http://dx.doi.org/10.3390/jne4010016.
Pełny tekst źródłaBayazit, Baris B., D. Keith Hollingsworth, and Larry C. Witte. "Heat Transfer Enhancement Caused by Sliding Bubbles." Journal of Heat Transfer 125, no. 3 (2003): 503–9. http://dx.doi.org/10.1115/1.1565090.
Pełny tekst źródłaHauptmann, Marc, Steven Brems, Elisabeth Camerotto, et al. "Stroboscopic Schlieren Study of Bubble Formation during Megasonic Agitation." Solid State Phenomena 187 (April 2012): 185–89. http://dx.doi.org/10.4028/www.scientific.net/ssp.187.185.
Pełny tekst źródłaNovotný, František, Lenka Prokopová, and Daniela Bošová. "Glass Micro-Bubbles as Additional Thermal Insulation/Shielding for Translucent and Non-Transparent Materials." Key Engineering Materials 776 (August 2018): 140–46. http://dx.doi.org/10.4028/www.scientific.net/kem.776.140.
Pełny tekst źródłaEdsall, Connor, Emerson Ham, Hal Holmes, Timothy L. Hall, and Eli Vlaisavljevich. "Effects of frequency on bubble-cloud behavior and ablation efficiency in intrinsic threshold histotripsy." Physics in Medicine & Biology 66, no. 22 (2021): 225009. http://dx.doi.org/10.1088/1361-6560/ac33ed.
Pełny tekst źródłaMitchell, Katherine, Jungkyu Park, Alex Resnick, Hunter Horner, and Eduardo B. Farfan. "Phonon Scattering and Thermal Conductivity of Actinide Oxides with Defects." Applied Sciences 10, no. 5 (2020): 1860. http://dx.doi.org/10.3390/app10051860.
Pełny tekst źródłaDhillon, Navdeep S., Dilipkumar Choudhary, Jayden Maree, Victor Inhelder, and Jazmin Guadarrama. "Controlled generation of a vapor bubble representative of nucleate boiling conditions using transient focused laser heating." Journal of Applied Physics 133, no. 2 (2023): 024702. http://dx.doi.org/10.1063/5.0134203.
Pełny tekst źródłaSTOREY, BRIAN D., and ANDREW J. SZERI. "Mixture segregation within sonoluminescence bubbles." Journal of Fluid Mechanics 396 (October 10, 1999): 203–21. http://dx.doi.org/10.1017/s0022112099005984.
Pełny tekst źródłaLin, Liwei, and Albert P. Pisano. "Thermal bubble powered microactuators." Microsystem Technologies 1, no. 1 (1994): 51–58. http://dx.doi.org/10.1007/bf01367761.
Pełny tekst źródłaWeerasinghe, Asanka, Brian D. Wirth, and Dimitrios Maroudas. "Thermal expansion of plasma-exposed tungsten." Journal of Applied Physics 132, no. 18 (2022): 185102. http://dx.doi.org/10.1063/5.0123280.
Pełny tekst źródłaZhang, Jing, Lingxin Zhang, and Jian Deng. "Numerical Study of the Collapse of Multiple Bubbles and the Energy Conversion during Bubble Collapse." Water 11, no. 2 (2019): 247. http://dx.doi.org/10.3390/w11020247.
Pełny tekst źródłaMohammadein, S. A., and A. F. Abu-Bakr. "The growth of vapour bubble in a superheated liquid between two phase turbulent flow." Canadian Journal of Physics 88, no. 5 (2010): 317–24. http://dx.doi.org/10.1139/p10-022.
Pełny tekst źródłaYasui, Kyuichi. "Multibubble Sonoluminescence from a Theoretical Perspective." Molecules 26, no. 15 (2021): 4624. http://dx.doi.org/10.3390/molecules26154624.
Pełny tekst źródłaUchida, Tsutomu, Ike Nagamine, Itsuka Yabe, et al. "Dissolution Process Observation of Methane Bubbles in the Deep Ocean Simulator Facility." Energies 13, no. 15 (2020): 3938. http://dx.doi.org/10.3390/en13153938.
Pełny tekst źródłaYasui, Kyuichi. "Production of O Radicals from Cavitation Bubbles under Ultrasound." Molecules 27, no. 15 (2022): 4788. http://dx.doi.org/10.3390/molecules27154788.
Pełny tekst źródłaSchönberner, Detlef, Ralf Jacob, René Heller, and Matthias Steffen. "Analysis of the X-ray spectrum of the hot bubble of BD+30°3639." Proceedings of the International Astronomical Union 12, S323 (2016): 109–13. http://dx.doi.org/10.1017/s1743921317001223.
Pełny tekst źródłaToporkov, D. Yu. "Сollapse of weakly-nonspherical cavitation bubble in acetone and tetradecane". Multiphase Systems 13, № 3 (2018): 23–28. http://dx.doi.org/10.21662/mfs2018.3.003.
Pełny tekst źródłaKuriki, Hiroki, Yoko Yamanishi, Shinya Sakuma, Satoshi Akagi, and Fumihito Arai. "Local Ablation of a Single Cell Using Micro/Nano Bubbles." Journal of Robotics and Mechatronics 25, no. 3 (2013): 476–83. http://dx.doi.org/10.20965/jrm.2013.p0476.
Pełny tekst źródłaBaddour, R. E. "Computer simulation of ice control with thermal-bubble plumes — line source configuration." Canadian Journal of Civil Engineering 17, no. 4 (1990): 509–13. http://dx.doi.org/10.1139/l90-058.
Pełny tekst źródłaZhang, Wei Hao, and Guo Zhong Li. "Preparation and Application of the Vesicant in Gypsum." Advanced Materials Research 306-307 (August 2011): 934–37. http://dx.doi.org/10.4028/www.scientific.net/amr.306-307.934.
Pełny tekst źródład’Agostino, Luca, Fabrizio d’Auria, and Christopher E. Brennen. "A Three-Dimensional Analysis of Rotordynamic Forces on Whirling and Cavitating Helical Inducers." Journal of Fluids Engineering 120, no. 4 (1998): 698–704. http://dx.doi.org/10.1115/1.2820726.
Pełny tekst źródłaGuerrero, M. A., X. Fang, Y. H. Chu, J. A. Toalá, and R. A. Gruendl. "Revealing the Location of the Mixing Layer in a Hot Bubble." Proceedings of the International Astronomical Union 12, S323 (2016): 114–18. http://dx.doi.org/10.1017/s1743921317002320.
Pełny tekst źródłaD'Agostino, Luca, Christopher E. Brennen, and Allan J. Acosta. "Linearized dynamics of two-dimensional bubbly and cavitating flows over slender surfaces." Journal of Fluid Mechanics 192 (July 1988): 485–509. http://dx.doi.org/10.1017/s0022112088001958.
Pełny tekst źródłaTEMKIN, S. "Radial pulsations of a fluid sphere in a sound wave." Journal of Fluid Mechanics 380 (February 10, 1999): 1–38. http://dx.doi.org/10.1017/s0022112098003401.
Pełny tekst źródłaLi, Jiaqi, Daniel Kang, Kazi Fazle Rabbi, et al. "Liquid film–induced critical heat flux enhancement on structured surfaces." Science Advances 7, no. 26 (2021): eabg4537. http://dx.doi.org/10.1126/sciadv.abg4537.
Pełny tekst źródłaBRENNER, MICHAEL P. "Cavitation in linear bubbles." Journal of Fluid Mechanics 632 (July 27, 2009): 1–4. http://dx.doi.org/10.1017/s0022112009008167.
Pełny tekst źródłaSMEULDERS, D. M. J., and M. E. H. VAN DONGEN. "Wave propagation in porous media containing a dilute gas–liquid mixture: theory and experiments." Journal of Fluid Mechanics 343 (July 25, 1997): 351–73. http://dx.doi.org/10.1017/s0022112097005983.
Pełny tekst źródłaShimabukuro, Hayato, Yi Mao, and Jianrong Tan. "Estimation of H ii Bubble Size Distribution from 21 cm Power Spectrum with Artificial Neural Networks." Research in Astronomy and Astrophysics 22, no. 3 (2022): 035027. http://dx.doi.org/10.1088/1674-4527/ac4ca3.
Pełny tekst źródłaGreen, Samuel, Jonathan Mackey, Thomas J. Haworth, Vasilii V. Gvaramadze, and Peter Duffy. "Thermal emission from bow shocks." Astronomy & Astrophysics 625 (April 29, 2019): A4. http://dx.doi.org/10.1051/0004-6361/201834832.
Pełny tekst źródłaCharee, Wisan, Viboon Tangwarodomnukun, and Chaiya Dumkum. "Bubble Formation in the Underwater Laser Ablation of Silicon." Applied Mechanics and Materials 835 (May 2016): 144–48. http://dx.doi.org/10.4028/www.scientific.net/amm.835.144.
Pełny tekst źródłaKappagantu, Ramana, and Elvis Dominguez. "Simulating vibro-acoustic damping of bubbles in fluids." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 266, no. 2 (2023): 962–71. http://dx.doi.org/10.3397/nc_2023_0115.
Pełny tekst źródłaDelale, Can F. "Thermal Damping in Cavitating Nozzle Flows." Journal of Fluids Engineering 124, no. 4 (2002): 969–76. http://dx.doi.org/10.1115/1.1511163.
Pełny tekst źródłaGuo, Lei, Shu Sheng Zhang, and Lin Cheng. "Study for Bubble Dynamics of Nucleate Boiling in Narrow Channels." Advanced Materials Research 123-125 (August 2010): 499–502. http://dx.doi.org/10.4028/www.scientific.net/amr.123-125.499.
Pełny tekst źródłaHayes, Brandon, Lawrence Smith, Heiko Kabutz, et al. "Rapid Fabrication of Low-Cost Thermal Bubble-Driven Micro-Pumps." Micromachines 13, no. 10 (2022): 1634. http://dx.doi.org/10.3390/mi13101634.
Pełny tekst źródła