Artykuły w czasopismach na temat „Thermal Expansion Coefficient”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Thermal Expansion Coefficient”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Haverland, Gordon Wayne. "Thermal expansion coefficient." JOM 49, no. 8 (1997): 6. http://dx.doi.org/10.1007/bf02914380.
Pełny tekst źródłaOku, Tatsuo, and Shinichi Baba. "Coefficient of Thermal Expansion." TANSO 2002, no. 202 (2002): 90–95. http://dx.doi.org/10.7209/tanso.2002.90.
Pełny tekst źródłaYang, Rui, Qing Yang, and Bin Niu. "Design and study on the tailorable directional thermal expansion of dual-material planar metamaterial." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, no. 3 (2019): 837–46. http://dx.doi.org/10.1177/0954406219884973.
Pełny tekst źródłaBurns, S. J., and S. P. Burns. "Is there a layer deep in the Earth that uncouples heat from mechanical work?" Solid Earth Discussions 6, no. 1 (2014): 487–509. http://dx.doi.org/10.5194/sed-6-487-2014.
Pełny tekst źródłaA. Khachatrian, A. "Calculation of the linear coefficient of thermal expansion of multi-element, single-phase metal alloys from the first principles." Uspihi materialoznavstva 2021, no. 2 (2021): 10–18. http://dx.doi.org/10.15407/materials2021.02.010.
Pełny tekst źródłaLiang, Rui-sheng, and Feng-chao Liu. "Measurement of thermal expansion coefficient of substrate GGG and its epitaxial layer YIG." Powder Diffraction 14, no. 1 (1999): 2–4. http://dx.doi.org/10.1017/s0885715600010216.
Pełny tekst źródłaMiyazawa, S. "Coefficient of Thermal Expansion of Concrete." Concrete Journal 56, no. 5 (2018): 368–72. http://dx.doi.org/10.3151/coj.56.5_368.
Pełny tekst źródłaRoy, R., D. K. Agrawal, and H. A. McKinstry. "Very Low Thermal Expansion Coefficient Materials." Annual Review of Materials Science 19, no. 1 (1989): 59–81. http://dx.doi.org/10.1146/annurev.ms.19.080189.000423.
Pełny tekst źródłaTakeda, Jun, Yukio Yasui, Hisashi Sasaki, and Masatoshi Sato. "Thermal Expansion Coefficient of BaCo1-xNixS2." Journal of the Physical Society of Japan 66, no. 6 (1997): 1718–22. http://dx.doi.org/10.1143/jpsj.66.1718.
Pełny tekst źródłaRama Nanad, Rama Nanad, and Dr Vipin Kumar Dr. Vipin Kumar. "Study on Volume Thermal Expansion Coefficient." International Journal of Physical Education & Sports Sciences 16, no. 2 (2024): 1–5. http://dx.doi.org/10.29070/7hwejw79.
Pełny tekst źródłaTalwar, D. N., and Joseph C. Sherbondy. "Thermal expansion coefficient of 3C–SiC." Applied Physics Letters 67, no. 22 (1995): 3301–3. http://dx.doi.org/10.1063/1.115227.
Pełny tekst źródłaTrumper, Ricardo, and Moshe Gelbman. "Measurement of a thermal expansion coefficient." Physics Teacher 35, no. 7 (1997): 437–38. http://dx.doi.org/10.1119/1.2344750.
Pełny tekst źródłaLow, D., T. Sumii, and M. Swain. "Thermal expansion coefficient of titanium casting." Journal of Oral Rehabilitation 28, no. 3 (2001): 239–42. http://dx.doi.org/10.1046/j.1365-2842.2001.00664.x.
Pełny tekst źródłaRussell, A. M., B. A. Cook, J. L. Harringa, and T. L. Lewis. "Coefficient of thermal expansion of AlMgB14." Scripta Materialia 46, no. 9 (2002): 629–33. http://dx.doi.org/10.1016/s1359-6462(02)00034-9.
Pełny tekst źródłaLow, D., T. Sumii, and M. Swain. "Thermal expansion coefficient of titanium casting." Journal of Oral Rehabilitation 28, no. 3 (2001): 239–42. http://dx.doi.org/10.1111/j.1365-2842.2001.00664.x.
Pełny tekst źródłaKumar, V., and B. S. R. Sastry. "Thermal Expansion Coefficient of Binary Semiconductors." Crystal Research and Technology 36, no. 6 (2001): 565–69. http://dx.doi.org/10.1002/1521-4079(200107)36:6<565::aid-crat565>3.0.co;2-f.
Pełny tekst źródłaLu, Tong, Song Ling Liu, Yong Hao Sun, Wei-Hua Wang, and Ming-Xiang Pan. "A Free-Volume Model for Thermal Expansion of Metallic Glass." Chinese Physics Letters 39, no. 3 (2022): 036401. http://dx.doi.org/10.1088/0256-307x/39/3/036401.
Pełny tekst źródłaAgar, J. G., N. R. Morgenstern, and J. D. Scott. "Thermal expansion and pore pressure generation in oil sands." Canadian Geotechnical Journal 23, no. 3 (1986): 327–33. http://dx.doi.org/10.1139/t86-046.
Pełny tekst źródłaShut, M. I., G. V. Rokitskaya, M. A. Rokitskiy, and A. M. Shut. "Features of penton – AgI system thermal expansion." Physics of Aerodisperse Systems, no. 53 (June 15, 2021): 36–45. http://dx.doi.org/10.18524/0367-1631.2016.53.159306.
Pełny tekst źródłaShi, Xiaolong, Mohammad Kazem Hassanzadeh Aghdam, and Reza Ansari. "Effect of aluminum carbide interphase on the thermomechanical behavior of carbon nanotube/aluminum nanocomposites." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233, no. 9 (2018): 1843–53. http://dx.doi.org/10.1177/1464420718794716.
Pełny tekst źródłaZahmatkesh, Iman. "On the suitability of the volume-averaging approximation for the description of thermal expansion coefficient of nanofluids." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 229, no. 15 (2014): 2835–41. http://dx.doi.org/10.1177/0954406214563735.
Pełny tekst źródłaSugimoto, Hideki, Ken Imamura, Kazuki Sakami, Katsuhiro Inomata, and Eiji Nakanishi. "Transparent Acryl‐Alumina Nano‐Hybrid Materials with Low Coefficient of Thermal Expansion." Sen'i Gakkaishi 71, no. 11 (2015): 333–38. http://dx.doi.org/10.2115/fiber.71.333.
Pełny tekst źródłaHAYAKAWA, Yuko, and Toshihiro ISOBE. "Negative Thermal Expansion Materials and Control of Thermal Expansion Coefficient of Composites." Journal of the Japan Society of Colour Material 90, no. 4 (2017): 131–37. http://dx.doi.org/10.4011/shikizai.90.131.
Pełny tekst źródłaLim, Teik-Cheng. "Coefficient of thermal expansion of stacked auxetic and negative thermal expansion laminates." physica status solidi (b) 248, no. 1 (2010): 140–47. http://dx.doi.org/10.1002/pssb.200983970.
Pełny tekst źródłaLim, Teik-Cheng. "Metamaterial with Tunable Positive and Negative Hygrothermal Expansion Inspired by a Four-Fold Symmetrical Islamic Motif." Symmetry 15, no. 2 (2023): 462. http://dx.doi.org/10.3390/sym15020462.
Pełny tekst źródłaГрабов, В. М., В. А. Комаров, Е. В. Демидов, А. В. Суслов та М. В. Суслов. "Гальваномагнитные свойства тонких пленок Bi-=SUB=-95-=/SUB=-Sb-=SUB=-5-=/SUB=- на подложках с различным температурным расширением". Письма в журнал технической физики 44, № 11 (2018): 71. http://dx.doi.org/10.21883/pjtf.2018.11.46199.17268.
Pełny tekst źródłaYue, Donghua, and Liming Wei. "Twisted Fibers Can Have an Adjustable Thermal Expansion." Proceedings 2, no. 8 (2018): 456. http://dx.doi.org/10.3390/icem18-05341.
Pełny tekst źródłaLiu, Xie Quan, Xin Hua Ni, Shu Qin Zhang, and Wan Heng He. "Thermal Expansion Coefficient of Ni Base Alloy Composite Coating Containing Spheroidal Ceramic Grains." Applied Mechanics and Materials 44-47 (December 2010): 2148–51. http://dx.doi.org/10.4028/www.scientific.net/amm.44-47.2148.
Pełny tekst źródłaXiao, Zhuo Hao, An Xian Lu, and Fei Lu. "Relationship between the Thermal Expansion Coefficient and the Composition for R2O-MO-Al2O3-SiO2 System Glass." Advanced Materials Research 11-12 (February 2006): 65–68. http://dx.doi.org/10.4028/www.scientific.net/amr.11-12.65.
Pełny tekst źródłaZhu, Kai, Dao Yuan Yang, Juan Wu, and Rui Zhang. "Synthesis of Cordierite with Low Thermal Expansion Coefficient." Advanced Materials Research 105-106 (April 2010): 802–4. http://dx.doi.org/10.4028/www.scientific.net/amr.105-106.802.
Pełny tekst źródłaWang, Ai Kai, Ya Dong Xue, Rui Wang, et al. "Experimental Study on Thermal Expansion Properties and Micro-Pore Texture of High Strength Concrete in Early Age." Advanced Materials Research 250-253 (May 2011): 497–501. http://dx.doi.org/10.4028/www.scientific.net/amr.250-253.497.
Pełny tekst źródłaTran, Nam H., Kevin D. Hall, and Mainey James. "Coefficient of Thermal Expansion of Concrete Materials." Transportation Research Record: Journal of the Transportation Research Board 2087, no. 1 (2008): 51–56. http://dx.doi.org/10.3141/2087-06.
Pełny tekst źródłaSmith, James T., and Susan L. Tighe. "Recycled Concrete Aggregate Coefficient of Thermal Expansion." Transportation Research Record: Journal of the Transportation Research Board 2113, no. 1 (2009): 53–61. http://dx.doi.org/10.3141/2113-07.
Pełny tekst źródłaJimenez, F., B. Jimenez, S. Ramos, and J. Del Cerro. "Thermal expansion coefficient of latgs single crystals." Ferroelectrics 79, no. 1 (1988): 241–44. http://dx.doi.org/10.1080/00150198808229441.
Pełny tekst źródłaJin, Hong Mei, and Ping Wu. "First principles calculation of thermal expansion coefficient." Journal of Alloys and Compounds 343, no. 1-2 (2002): 71–76. http://dx.doi.org/10.1016/s0925-8388(02)00309-2.
Pełny tekst źródłaLehmann, Jochen K. "Determining the thermal expansion coefficient of gases." Journal of Chemical Education 69, no. 11 (1992): 943. http://dx.doi.org/10.1021/ed069p943.
Pełny tekst źródłaHayashi, Hideko, Mieko Watanabe, and Hideaki Inaba. "Measurement of thermal expansion coefficient of LaCrO3." Thermochimica Acta 359, no. 1 (2000): 77–85. http://dx.doi.org/10.1016/s0040-6031(00)00507-4.
Pełny tekst źródłaInbanathan, S. S. R., K. Moorthy, and G. Balasubramanian. "Measurement and Demonstration of Thermal Expansion Coefficient." Physics Teacher 45, no. 9 (2007): 566–67. http://dx.doi.org/10.1119/1.2809151.
Pełny tekst źródłaMarques, F. C., R. G. Lacerda, A. Champi, V. Stolojan, D. C. Cox, and S. R. P. Silva. "Thermal expansion coefficient of hydrogenated amorphous carbon." Applied Physics Letters 83, no. 15 (2003): 3099–101. http://dx.doi.org/10.1063/1.1619557.
Pełny tekst źródłaTien, Tong Sy. "Anharmonic Thermal Expansion Coefficient of Crystalline Iron." ASM Science Journal 19 (June 18, 2024): 1–7. http://dx.doi.org/10.32802/asmscj.2023.1589.
Pełny tekst źródłaFarid, Saad B. H. "Modeling of Viscosity and Thermal Expansion of Bioactive Glasses." ISRN Ceramics 2012 (December 4, 2012): 1–5. http://dx.doi.org/10.5402/2012/816902.
Pełny tekst źródłaAggarwal, Himanshu, Raj Kumar Das, Emile R. Engel, and Leonard J. Barbour. "A five-fold interpenetrated metal–organic framework showing a large variation in thermal expansion behaviour owing to dramatic structural transformation upon dehydration–rehydration." Chemical Communications 53, no. 5 (2017): 861–64. http://dx.doi.org/10.1039/c6cc07995d.
Pełny tekst źródłaDing, Sha, Zhong He Shui, Teng Pan, and Wei Chen. "Study on Preparation of Low-Thermal Expansion Coefficient Concrete with Fly Ash." Key Engineering Materials 599 (February 2014): 89–92. http://dx.doi.org/10.4028/www.scientific.net/kem.599.89.
Pełny tekst źródłaMahmoodi, Mohammad Javad, Mohammad Kazem Hassanzadeh-Aghdam, and Reza Ansari. "Effects of added SiO2 nanoparticles on the thermal expansion behavior of shape memory polymer nanocomposites." Journal of Intelligent Material Systems and Structures 30, no. 1 (2018): 32–44. http://dx.doi.org/10.1177/1045389x18806405.
Pełny tekst źródłaZhai, Ping, Xiao Feng Duan, and Da Qian Chen. "High Temperature Stability of Zirconium Tungstate." Materials Science Forum 993 (May 2020): 771–75. http://dx.doi.org/10.4028/www.scientific.net/msf.993.771.
Pełny tekst źródłaNesic, M. V., M. N. Popovic, S. P. Galovic, et al. "Estimation of linear expansion coefficient and thermal diffusivity by photoacoustic numerical self-consistent procedure." Journal of Applied Physics 131, no. 10 (2022): 105104. http://dx.doi.org/10.1063/5.0075979.
Pełny tekst źródłaMocioiu, Ana-Maria, and Oana Cătălina Mocioiu. "Thermal behavior of lead silicate vitreous materials for sealants." Manufacturing Review 8 (2021): 4. http://dx.doi.org/10.1051/mfreview/2021002.
Pełny tekst źródłaAbdel Hady Gepreel, Mohamed. "New Ti-Alloy with Negative and Zero Thermal Expansion Coefficients." Key Engineering Materials 495 (November 2011): 62–66. http://dx.doi.org/10.4028/www.scientific.net/kem.495.62.
Pełny tekst źródłaSun, Ya, Dun Jin, Xi Zhang, et al. "Controllable Technology for Thermal Expansion Coefficient of Commercial Materials for Solid Oxide Electrolytic Cells." Materials 17, no. 5 (2024): 1216. http://dx.doi.org/10.3390/ma17051216.
Pełny tekst źródłaSong, Weon-Keun. "Effective thermal expansion coefficient of frozen granite soil." Canadian Geotechnical Journal 44, no. 10 (2007): 1137–47. http://dx.doi.org/10.1139/t07-047.
Pełny tekst źródła